K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Lời giải:

Để ý rằng:

\(a=\underbrace{111....1}_{\text{n số 1}}=\frac{10^{n}-1}{9}\)

\(b=1\underbrace{00000....0}_{\text{ n-1 số 0}}5=1\underbrace{000....0}_{\text{n số 0}}+5=10^n+5\)

Do đó, \(ab+1=\frac{(10^n-1)(10^n+5)}{9}+1=\frac{10^{2n}+4.10^{2n}+4}{9}\)

\(\Leftrightarrow ab+1=\frac{(10^n+2)^2}{9}=\left (\frac{10^n+2}{3}\right)^2\)

Ta thấy \(10\equiv 1\pmod 3\rightarrow 10^n+2\equiv 1+2\equiv 0\pmod 3\) hay \(10^n+2\vdots 3\Rightarrow \frac{10^n+2}{3}\in\mathbb{Z}\)

Do đó \(ab+1=\left (\frac{10^n+2}{3}\right)^2\) là số chính phương. (đpcm)

19 tháng 7 2021

cảm ơn bạn rất nhiều, mik cx đag thắc mắc câu này, may là có bạn giúp

 

6 tháng 10 2016

Ta có:

xy + 1 = 1111...1.1000...05 + 1

          (2004 c/s 1)(2003 c/s 0)

xy + 1 = 1111...1.3.333...35 + 1

         (2004 c/s 1)(2003 c/s 3)

xy + 1 = 3333...3.333...35 + 1

        (2004 c/s 3)(2003 c/s 3)

xy + 1 = 3333...3.333...34 + 3333...3 + 1

       (2004 c/s 3)(2003 c/s 3)(2004 c/s 3)

xy + 1 = 3333...34.3333...34

          (2003 c/s 3)(2003 c/s 3)

xy + 1 = 3333...342 là số chính phương

          (2003 c/s 3)

Chứng tỏ ...

6 tháng 10 2016

Ta co 
x=10^2003 10^2002 ... 10^0 
10x=10^2004 ... 10^1 
Suy ra 9x=10^2004-1 
hay x=(10^2004-1)/9 
Mat khac 
y=10^2004 5 
Do do 
xy 1=(10^2004-1)(10^2004 5)/9 1 
=(10^4008 4.10^2004 4)/9 
=[(10^2004 2)/3]^2 
Lai co 10^2004 2 co tong cac chu so =3 nen chia het cho 3 
Suy ra (10^2004 2)/3 la so tu nhien. 
Vay xy 1 la scp.

30 tháng 7 2017

Bài 2 Chứng minh :  A.B + 1 là số chính phương với

a/      A =11...1 và B =100...05  (có n chữ số 1  và  n-1 chữ số 0)

        Lời giải:   

Thấy A = 1111 … 11 và B = 100…005

Nên:  A + (8A + 6) = 1111…11+ 888…94 = 100…05 = B. Tức là 9A + 6 = B

Do đó: A.B + 1 = A.(9A + 6) + 1 = 9A2 + 6.A + 1 = (3A + 1)2 

b/     A = 11...12  và  B =11...14   (có n chữ số 1)

         Lời giải: Thấy B = A + 2 Nên AB + 1 = A.(A + 2) +1 = (A+1)2 

Bài 3  Cho A là số gồm 2n chữ số 1, B là số gồm n+1 chữ số 1, C là số gồm n chữ số 6.              

         Chứng minh rằng:  (A + B + C + 8) là số chính phương

 Lời giải:  - Với n =1  Thì A = 11,  B = 11,  C = 6  Nên A + B + C + 8 = 36 = 62 

- Với  n = 2 Thì A = 1111,  B = 111,  C = 66 Nên A + B + C + 8 = 1296 = 362  

- Với n = 3 Thì A = 111111,   B = 1111,  C = 666 Nên A + B + C + 8 = 112896 = 3362 

-  Trường hợp tổng quát,  n>3 

Đặt S = A + B + C + 8 = 111…12888…88 + 8 = 111… 12888…896.  

 Cộng dọc, viết ngay ngắn các bạn dễ thấy:   

 S Là số tự nhiên có 2n chữ số, gồm n-1 chữ số 1, một chữ số 2, có  n-2 chữ số 8, một chữ số 9 và một chữ số 6

 (Với n là số tự nhiên, n>2)  

Ta có S = 111…12888…896  = 111…12888…87 + 9 =   333…33x333…39 + 9 =  

                                                    =  333…33x(333…33 + 6) + 9 =

                                                    = 333…332 + 6x333…33 + 9 = (333…33 + 3)2 = 333…362  

                                                  (Số 333…36 có n chữ số, gồm n-1 chữ số 3 và một chữ số 6 ) 

Bài 4  Chứng minh số \(\frac{1}{3}.\left(111...11-333...3300...00\right)\) là lập phương của 1 số tự nhiên

( n chữ số 1, n chữ số 3, n chữ số 0)

Lời giải : Số đã cho là một số âm nên nó không thể bằng lập phương của một số tự nhiên. (Bạn xem lại đề ra đi nhé)

Bài 5:  Cho 1 dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách chèn số 15 vào giữa số hạng liền trước: 

Vd: 16 => 1156 => 111556 => 11115556 =>...

Chứng minh mọi số hạng của dãy đều là số chính phương. 

Bài 2 Chứng minh :  A.B + 1 là số chính phương với

a/      A =11...1 và B =100...05  (có n chữ số 1  và  n-1 chữ số 0)

        Lời giải:   

Thấy A = 1111 … 11 và B = 100…005

Nên:  A + (8A + 6) = 1111…11+ 888…94 = 100…05 = B. Tức là 9A + 6 = B

Do đó: A.B + 1 = A.(9A + 6) + 1 = 9A2 + 6.A + 1 = (3A + 1)2 

b/     A = 11...12  và  B =11...14   (có n chữ số 1)

         Lời giải: Thấy B = A + 2 Nên AB + 1 = A.(A + 2) +1 = (A+1)2

Bài 3  Cho A là số gồm 2n chữ số 1, B là số gồm n+1 chữ số 1, C là số gồm n chữ số 6.              

         Chứng minh rằng:  (A + B + C + 8) là số chính phương

 Lời giải:  - Với n =1  Thì A = 11,  B = 11,  C = 6  Nên A + B + C + 8 = 36 = 62 

- Với  n = 2 Thì A = 1111,  B = 111,  C = 66 Nên A + B + C + 8 = 1296 = 362  

- Với n = 3 Thì A = 111111,   B = 1111,  C = 666 Nên A + B + C + 8 = 112896 = 3362 

-  Trường hợp tổng quát,  n>3  

Đặt S = A + B + C + 8 = 111…12888…88 + 8 = 111… 12888…896.  

 Cộng dọc, viết ngay ngắn các bạn dễ thấy:   

 S Là số tự nhiên có 2n chữ số, gồm n-1 chữ số 1, một chữ số 2, n-2 chữ số 8, một chữ số 9 và một chữ số 6

 (Với n là số tự nhiên, n>2)  

Ta có S = 111…12888…896  = 111…12888…87 + 9 =   333…33x333…39 + 9 =  

                                                    =  333…33x(333…33 + 6) + 9 =

                                                    = 333…332 + 6x333…33 + 9 = (333…33 + 3)2 = 333…362  

                                                  (Số 333…36 có n chữ số, gồm n-1 chữ số 3 và một chữ số 6 )

Bài 4  Chứng minh số .(11...1-33...300...0) là lập phương của 1 số tự nhiên

( n chữ số 1, n chữ số 3, n chữ số 0)

Bài 5:  Cho 1 dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách chèn số 15 vào giữa số hạng liền trước: Vd: 16 => 1156 => 111556 => 11115556 =>...

Chứng minh mọi số hạng của dãy đều là số chính phương

   Lời giải:  Ta có hai số hạng đầu của dãy số đó là :

                               16 = 15 + 1 = 3 . 5 + 1 = 3.(3 + 2) + 1 = 32 + 2.3 + 1 = (3 + 1)2

                            1156 = 1155 + 1 = 33x35 + 1 = 33x(33 + 2) + 1 = 332 + 2.33 + 1 = (33 + 1)2

Số hạng tổng quát (Có n chữ số 1, có  n-1 chữ số 5 và 1 chữ số 6) 111…55…56 Ta biến đổi :

111…1155…56  = 111…1155…55 + 1 =

                            = 333…33x333…35 + 1 = 333…33x(333..33 + 2) + 1 =

                            = 333…332 + 2x333…33 + 1 = (333…33 + 1)2 = 333…342

                                                      (333…34  Có n-1 chữ số 3 và một chữ số 4)

Chú ý rằng: Tích (Mỗi thừa số có n chữ số. Thừa số thứ nhất có n – 1 chữ số 3 và một chữ số 5 ở hàng đơn vị, thừa số thứ hai có n chữ số 3):  333…35x 333…3 viết dạng nhân dọc :

                           333…335                               (Có n-1 chữ số 3 và một chữ số 5)        

                     x    333... 333

                ________________

                         100...005                          Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)

                     100… 005     ( Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)

                        ……………

          100…005                   (Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)

_______________________

          11…1155…555         (Có n chữ số 1 và n chữ số 5)

30 tháng 7 2017

Chúc bạn Nguyễn Như Quỳ học tập ngày càng giỏi . Bạn tìm đâu ra những bài toán hay đến vậy ?

26 tháng 3 2017

Ta có:

\(a=11...1=\frac{10^{2008}-1}{9}\)

\(b=100...05=10...0+5=10^{2008}+5\)

\(\Rightarrow ab+1=\frac{\left(10^{2008}-1\right)\left(10^{2008}+5\right)}{9}+1\)

\(=\frac{\left(10^{2008}\right)^2+4.10^{2008}-5+9}{9}\)

\(=\left(\frac{10^{2008}+2}{3}\right)^2\)

\(\Rightarrow\sqrt{ab+1}=\sqrt{\left(\frac{10^{2008}+2}{3}\right)^2}=\frac{10^{2008}+2}{3}\)

Ta thấy:

\(10^{2008}+2=10...02⋮3\Rightarrow\frac{10^{2008}+2}{3}\in N\)

Hay \(\sqrt{ab+1}\) là số tự nhiên (Đpcm)

16 tháng 8 2019

Ta có \(ab-1=1000\cdot2020-1=2019999\)

Mà tổng của 2019999 là 39 => 39 chia hết cho 3 hay ab-1 chia hết cho 3

Chúc bạn học tốt !!

21 tháng 7 2016

trả lời chỉ để lấy tích thời mọi người tích giùm hihi

NV
6 tháng 8 2021

\(a=\dfrac{1}{9}.\left(999...9\right)=\dfrac{1}{9}.\left(100...0-1\right)=\dfrac{1}{9}\left(10^n-1\right)\)

\(b=100...0+5=10^n+5\)

\(\Rightarrow ab+1=\dfrac{1}{9}\left(10^n-1\right)\left(10^n+5\right)+1=\dfrac{1}{9}\left(10^{2n}+4.10^n+4\right)=\dfrac{1}{9}\left(10^n+2\right)^2\)

\(=\left(\dfrac{10^n+2}{3}\right)^2\)

Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\)

\(\Rightarrow10^n+2⋮3\)

\(\Rightarrow\dfrac{10^n+2}{3}\in Z\)

\(\Rightarrow\left(\dfrac{10^n+2}{3}\right)^2\) là SCP hay \(ab+1\) là SCP