K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Tọa độ trung điểm I của AB là:

\(\left\{{}\begin{matrix}x=\dfrac{-1+2}{2}=\dfrac{1}{2}\\y=\dfrac{1+3}{2}=\dfrac{4}{2}=2\end{matrix}\right.\)

=>I(1/2;2)

A(-1;1); B(2;3)

=>\(\overrightarrow{AB}=\left(2+1;3-1\right)\)

=>\(\overrightarrow{AB}=\left(3;2\right)\)

Gọi d là đường trung trực của AB

mà I là trung điểm của AB

nên d\(\perp\)AB tại I

d\(\perp\)AB nên d nhận \(\overrightarrow{AB}=\left(3;2\right)\) làm vecto pháp tuyến

Phương trình d là:

\(3\left(x-\dfrac{1}{2}\right)+2\left(y-2\right)=0\)

=>\(3x+2y-\dfrac{11}{2}=0\)

b: \(A\left(-1;1\right);C\left(1;4\right)\)

=>\(\overrightarrow{AC}=\left(1+1;4-1\right)=\left(2;3\right)\)

=>AC có vecto pháp tuyến là (-3;2)

Phương trình đường thẳng AC là:

-3(x+1)+2(y-1)=0

=>-3x-3+2y-2=0

=>-3x+2y-5=0

c: Tọa độ trung điểm M của AC là:

\(\left\{{}\begin{matrix}x=\dfrac{-1+1}{2}=\dfrac{0}{2}=0\\y=\dfrac{1+4}{2}=\dfrac{5}{2}\end{matrix}\right.\)

Xét ΔABC có

I,M lần lượt là trung điểm của AB,AC

=>IM là đường trung bình của ΔABC

=>IM//BC

I(1/2;2) M(0;5/2)

\(\overrightarrow{IM}=\left(0-\dfrac{1}{2};\dfrac{5}{2}-2\right)=\left(-\dfrac{1}{2};\dfrac{1}{2}\right)=\left(-1;1\right)\)

=>IM có vecto pháp tuyến là (1;1)

Phương trình đường trung bình ứng với cạnh BC là:

1(x-0)+1(y-5/2)=0

=>\(x+y-\dfrac{5}{2}=0\)

16 tháng 2 2021

song ngư đẹp trai

16 tháng 2 2021

hiện nay mẹ hơn con 24 tuổi và tuổi con bằng 1 /3 tuổi mẹ cách đây 3 năm tuổi con là bao nhiêu

8 tháng 4 2016

A B C P(1,2;5,6)

Điểm P có tọa độ \(\left(\frac{5}{6};\frac{28}{5}\right)\). Đặt \(\widehat{ABC}=\alpha\). Do tam giác ABC cân tại A nên \(\alpha\in\left(0;\frac{\pi}{2}\right)\) do đó \(\alpha=\left(\widehat{AB,BC}\right)=\left(\widehat{BC,CA}\right)\)

và \(\cos\alpha=\frac{\left|4.1+\left(-1\right).\left(-2\right)\right|}{\sqrt{4^2+\left(-1\right)^2}.\sqrt{1^2+\left(-2\right)^2}}=\frac{6}{\sqrt{5.17}}\)

Do đó bài toán trở thành viết phương trình đường thẳng đi qua \(P\left(\frac{6}{5};\frac{28}{7}\right)\) không song song với AB, tạo với BC góc \(\alpha\) mà \(\cos\alpha=\frac{6}{\sqrt{5.17}}\) (1)

Đường thẳng AC cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right)\) với \(a^2+b^2\ne0\) và \(a\ne-4b\) (do AC không cùng phương với AB). Từ đó và (1) suy ra :

\(\frac{6}{\sqrt{5.17}}=\frac{\left|a-2b\right|}{\sqrt{5}.\sqrt{a^2+b^2}}\Leftrightarrow6\sqrt{a^2+b^2}=\sqrt{17}.\left|a-2b\right|\)

                              \(\Leftrightarrow19a^2+68ab-32b^2=0\)

                              \(\Leftrightarrow\left(a+4b\right)\left(19a-8b\right)=0\)

                              \(\Leftrightarrow19a=8b\) (do \(a\ne-4b\) (2)

Từ (2) và do \(a^2+b^2\ne0\), chọn a=40, b=95 được phương trình đường thẳng AC cần tìm là \(40\left(x-\frac{6}{5}\right)+95\left(y-\frac{28}{5}\right)=0\) hay \(8x+19y-116=0\)

30 tháng 5 2017

Hỏi đáp Toán

30 tháng 5 2017

11 tháng 8 2016

bạn có viết sai pt nào k vậy?

11 tháng 8 2016

bài toán này nghĩ mãi không ra, mình làm theo cách dời hình của lớp 11 nên không thấy hợp lý lắm.
bản thân \(x_B,x_A\)khá lẻ. Để tí nữa mình sửa lại cho chẵn để dẽ tính hơn.

Trong mặt phẳng Oxy, cho A(-3; 2), B(1; 4), C(0; 5) và đường thẳng (Δ ): -3x+4y-1=0 a) Viết phương trình tham số các cạnh AB, AC , BCcủa tam giác ABC b) Viết PT tham số đường thẳng d qua A và có véc tơ pháp tuyến \(\overset{\rightarrow}{n}\)( -4;1) c) Viết PT tổng quát đường thẳng d qua B và có véc tơ chỉ phương \(\overrightarrow{u}\)( -4;1) d) Viết phương trình tổng quát các cạnh AB, AC của tam giác ABC e) Viết...
Đọc tiếp

Trong mặt phẳng Oxy, cho A(-3; 2), B(1; 4), C(0; 5) và đường thẳng (Δ ): -3x+4y-1=0
a) Viết phương trình tham số các cạnh AB, AC , BCcủa tam giác ABC
b) Viết PT tham số đường thẳng d qua A và có véc tơ pháp tuyến \(\overset{\rightarrow}{n}\)( -4;1)
c) Viết PT tổng quát đường thẳng d qua B và có véc tơ chỉ phương \(\overrightarrow{u}\)( -4;1)
d) Viết phương trình tổng quát các cạnh AB, AC của tam giác ABC
e) Viết phương trình đường thẳng d qua A và song song với Δ
f) Viết phương trình đường thẳng d’ qua C và vuông góc với đường thẳng Δ
g) Viết phương trình đường tròn (C) tâm B và đi qua điểm C.
h) Viết phương trình đường tròn (C) đường kính AB.
i) Viết phương trình đường tròn (C) đi qua 3 điểm A, B

k) Cho đường thẳng d:\(\left\{{}\begin{matrix}x=2+2t\\y=3+2t\end{matrix}\right.\) Tìm điểm N∈ d sao cho khoảng cách từ N đến đường thẳng \(\Delta\) bằng 3

l) Cho 3 đường thẳng d\(_1\) :x+y+3=0 . d\(_2\) : x-y-4=0 , d\(_3\):x-2y = 0 Tìm điểm M ∈ d\(_3\) để
d (M; d\(_1\)) = 2d (M; d\(_2\))

0
18 tháng 10 2019

\(\overrightarrow{KA}=-\overrightarrow{AK}=-\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=-\frac{1}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\right)\)

\(=-\frac{1}{4}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}\)

\(\overrightarrow{KD}=\overrightarrow{AD}-\overrightarrow{AK}=\overrightarrow{AD}+\overrightarrow{KA}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\frac{1}{4}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}\)

\(=\frac{1}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)