\(10^{2012}+10^{2013}+10^{2014}+10^{2015}\) + 16

A có phải là số chính phươ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

A= 102012+102013+102014+102015+16

A=102012.1111 +16 

NX: 102012chia hết cho 4, 1111 chia 4 dư 3 =>102012.1111 chia 4 dư 3 mà 16 chia hết cho 4

=> A chia 4 dư 3 => A ko là scp

p/s tick hộ mk nha

12 tháng 12 2015

\(A=10^{2012}\left(1+10+100+1000\right)=10^{2012}.1111\)

 102012 là số chính phương . 1111 không là số chính phương

=> A không là số chính phương

15 tháng 3 2018

cho xin cai k

8 tháng 3 2018

10^2011+10^2012+10^2013+10^2014+10^2015+16 nha

8 tháng 5 2017

ta thấy: 10 chia 3 dư 1 => 10^x cũng chia 3 dư 1 nên bằng 3k+1

mà ở đây 10^2011+10^2013+10^2013+10^2014 có 4 lần 3k + 1 nên bằng 12k + 1 

còn 16 chia 3 dư 1 

=> A chia 3 dư 2

K có số chính phương nào ở dạng 3k+2, mà chỉ ở dạng 3k, 3k+1 nên A k là số chính phương

CHÚC PẠN HỌC GIỎI

23 tháng 5 2018

TA có :

A = \(\frac{10^{2012}-2}{10^{2013}-1}\)=> 10A = \(1-\frac{19}{10^{2013}-1}\)

B = \(\frac{10^{2013}-2}{10^{2014}-1}\)=> 10B = 1 - \(\frac{19}{10^{2014}-1}\)

Vì \(1-\frac{19}{10^{2013}-1}\)< 1 - \(\frac{19}{10^{2014}-1}\)hay 10A < 10B => A < B

Vậy A < B

9 tháng 4 2015

a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)

A có tổng các chữ số là 9 nên chia hết cho 3 (2)

Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24

b) A có chữ số tận cùng là 8 nên không là số chính phương

 

10 tháng 4 2015

a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)

A có tổng các chữ số là 9 nên chia hết cho 3 (2)

Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24

b) A có chữ số tận cùng là 8 nên không là số chính phương

 

15 tháng 8 2015

a)Ta áp dụng tính chất sau:

Nếu a<b=>a/b<(a+k)/(b+k)     (k thuộc N*)

Vì 1013+1<1014+1=>B=1013+1/1014+1<1013+1+9/1014+1+9

=>B<1013+10/1014+10

=>B<10.(1012+1)/10.(1013+1)

=>B<1012+1/1013+1=A

=>B<A

b)Ta áp dụng tính chất sau:

Nếu a>b=>a/b>(a+k)/(b+k)     (k thuộc N*)

 Vì 102015+1>102014+1=>B=102015+1/102014+1>102015+1+99/102014+1+99

=>B>102015+100/102014+100

=>B>100.(102013+1)/100.(102012+1)

=>B>102013+1/102012+1=A

=>B>A

3 tháng 4 2016

Mình làm cho câu đầu tiên thôi, câu thứ hai cũng tương tự nha:

Ta có:

A.10 = \(\frac{10^{12}+10}{10^{12}+1}\)                                                     B.10 = \(\frac{10^{14}+10}{10^{14}+1}\)

=>A.10 = \(\frac{10^{12}+1+9}{10^{12}+1}\)                                              =>B.10 = \(\frac{10^{14}+1+9}{10^{14}+1}\)

=>A.10 = 1 + \(\frac{9}{10^{12}+1}\)                                             =>B.10 = 1 + \(\frac{9}{10^{14}+1}\)

=>A.10 > B.10

=>A > B

Vậy A > B

12 tháng 2 2018

Vì \(\frac{10^{2014}+1}{10^{2015}+1}< 1\Rightarrow B=\frac{10^{2014}+1}{10^{2015}+1}< \frac{10^{2014}+1+9}{10^{2015}+1+9}\)

\(\Rightarrow B< \frac{10^{2014}+10}{10^{2015}+10}\)

\(\Rightarrow B< \frac{10\left(10^{2013}+1\right)}{10\left(10^{2014}+1\right)}\)

\(\Rightarrow B< \frac{10^{2013}+1}{10^{2014}+1}\)

\(\Rightarrow B< A\)

Vậy A > B

12 tháng 2 2018

Các bn giúp mình vơi mình đang cần lắm 

20 tháng 4 2019

\(A=\frac{10^{2012}+1}{10^{2013}+1}\)

\(10A=\frac{10\cdot\left[10^{2012}+1\right]}{10^{2013}+1}=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)

\(B=\frac{10^{2013}+1}{10^{2014}+1}\)

\(10B=\frac{10\cdot\left[10^{2013}+1\right]}{10^{2014}+1}=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)

Mà \(1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\)

Nên \(10A>10B\)

Hay \(A>B\)

Vậy : A > B