K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DP
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
Với n thuộc N và n > 1 sao cho 2n - 2 chia hết cho n
Chứng minh: \(2^{2^n}-1\)chia hết cho 2n-1
0
MT
1
NH
1
24 tháng 3 2017
Giải:
Nếu \(n=2k\)\((k\) \(\in N\)*\()\) thì:
\(19.8^{2k}+17=18.8^{2k}+\left(1+63\right)^k+\left(18-1\right)\)\(\equiv0\) (\(mod\) \(3\))
Nếu \(n=4k+1\) thì:
\(19.8^{4k+1}+17=13.8^{4k+1}+6.8.64^{2k}+17\)
\(=13.8^{4k+1}+39.64^{2k}+9\left(1-65\right)^{2k}+\left(13+4\right)\equiv0\) (\(mod\) \(13\) )
Nếu \(n=4k+3\) thì:
\(19.8^{4k+3}+17=15.8^{4k+3}+4.8^3.64^{2k}+17\)
\(=15.8^{4k+3}+4.510.64^{2k}+4.2\left(1-65\right)^{2k}+\left(25-8\right)\equiv0\) (\(mod\) \(5\))
Vậy \(\forall n\in N\)* \(,n>1\) thì \(19.8^n+17\) là hợp số (Đpcm)