Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{A}{B}=\frac{1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{4026}}{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}}\)
\(\Rightarrow\frac{A}{B}=\frac{\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}\right)+\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{4026}\right)}{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}}\)
\(\Rightarrow\frac{A}{B}=\frac{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}}{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}}+\frac{\frac{1}{2}+\frac{1}{4}+....+\frac{1}{4026}}{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}}\)
\(\Rightarrow\frac{A}{B}=1+\frac{\frac{1}{2}+\frac{1}{4}+....+\frac{1}{4026}}{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}}\)
Dễ thấy A/B > 1
2013/2014<1
=> \(\frac{A}{B}>\frac{2013}{2014}\)
\(1\dfrac{2013}{2014}\) cơ mà sao lại \(\dfrac{2013}{2014}\)
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{95.98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\frac{48}{98}\)
\(A=\frac{8}{49}\)
A = \(\frac{1}{3}\).{ \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)}
A = \(\frac{1}{3}\).{\(\frac{1}{2}-\frac{1}{98}\)}
A = \(\frac{1}{3}.\left\{\frac{49}{98}-\frac{1}{98}\right\}\)
A=\(\frac{1}{3}.\frac{24}{49}\)
A = \(\frac{49}{98}\)
vsavdavcacadcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
\(3\frac{1}{5}-x=1\frac{3}{5}+\frac{7}{10}\)
\(\frac{16}{5}-x=\frac{8}{5}+\frac{7}{10}\)
\(\frac{16}{5}-x=\frac{23}{10}\)
\(x=\frac{23}{10}-\frac{16}{5}\)
\(x=-\frac{9}{10}\)