K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

Theo t/c dãy tỉ số bằng nhau :

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\)(1)

Lại có : \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_n}{a_{n+1}}=\frac{a_1}{a_2}.\frac{a_2}{a_3}....\frac{a_n}{a_{n+1}}=\frac{a_1}{a_{n+1}}\)(2)

Từ (1) và (2)

\(\RightarrowĐPCM\)

18 tháng 7 2018

27/12/2017 lúc 18:59

Ex1: Điền từ thích hợp vào chỗ trống

 This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30

Ex2:Cho dạng đúng của động từ trong ngoặc

1.My sister(have)...........classes from Monday to Friday

2.She(read)................a book in her room now

3.He(get)........................up at 6.00 every day?

4.There(not be)..............a big yard behind his classroom

Dúng KG

21 tháng 10 2016

\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=\frac{a_3-3}{98}=...=\frac{a_{100}-100}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a_1-1+a_2-2+a_3-3+...+a_{100}-100}{1+2+3+...+100}\)\(=\)\(\frac{a_1+a_2+a_3+...+a_{100}-\left(1+2+3+...+100\right)}{1+2+3+...+100}\)

                                                                                \(=\)\(\frac{10100-5050}{5050}\)vì \(1+2+3+...+100=5050\)

                                                                                \(=\)   \(\frac{5050}{5050}\)\(=\)\(1\)

Ta có \(\frac{a_1-1}{100}=1\Rightarrow a_1-1=100\Rightarrow a_1=101\)

         \(\frac{a_2-2}{99}=1\Rightarrow a_2-2=99\Rightarrow a_2=101\)

         \(\frac{a_3-3}{98}=1\Rightarrow a_3-3=98\Rightarrow a_3=101\)

            \(....\)

           \(\frac{a_{100}-100}{1}=1\Rightarrow a_{100}-100=1\Rightarrow a_{100}=101\)

Vậy \(a_1=a_2=a_3=....=a_{100}=101\)

28 tháng 6 2017

Câu D

5 tháng 8 2017

2,

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=...=\dfrac{a_9-9}{1}=\dfrac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}=\dfrac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{45}=\dfrac{90-45}{45}=\dfrac{45}{45}=1\\ \Rightarrow a_1=a_2=...=a_9=10\)

5 tháng 8 2017

1) a thiếu đề .

b) \(\dfrac{2x}{3}=\dfrac{2y}{4}=\dfrac{4z}{5}\)

\(\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{2}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{2}=\dfrac{z}{\dfrac{5}{4}}\)

\(=\dfrac{x+y+z}{\dfrac{3}{2}+2+\dfrac{5}{4}}=\dfrac{49}{\dfrac{19}{4}}\)

\(=\dfrac{196}{19}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{196}{19}.\dfrac{3}{2}=\dfrac{294}{19}\\y=\dfrac{196}{19}.2=\dfrac{392}{19}\\z=\dfrac{196}{19}.\dfrac{5}{4}=\dfrac{245}{19}\end{matrix}\right.\)

\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=....=\dfrac{a_9-9}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=...=\dfrac{a_9-1}{1}\)

\(=\dfrac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)

\(=\dfrac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{9+8+...+1}\)

\(=\dfrac{90-45}{45}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a_1-1}{9}=1\Rightarrow a_1-1=9\Rightarrow a_1=10\\\dfrac{a_2-2}{8}=1\Rightarrow a_2-2=8\Rightarrow a_2=10\\\dfrac{a_9-9}{1}=1\Rightarrow a_9-9=1\Rightarrow a_9=10\end{matrix}\right.\)

\(\Rightarrow a_1=a_2=...=a_9=10\)

6 tháng 12 2017

\(x\)\(y\) là 2 đại lượng tỉ lệ thuận nên \(x=yk\Rightarrow x_1=y_1k\Leftrightarrow2=3k\Leftrightarrow k=\dfrac{2}{3}\)

\(\Rightarrow x_2=\dfrac{2}{3}y_2\Leftrightarrow\dfrac{x_2}{2}=\dfrac{y_2}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x_2}{2}=\dfrac{y_2}{3}=\dfrac{x_2+y_2}{2+3}=\dfrac{20}{5}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=2.4=8\\y_2=3.4=12\end{matrix}\right.\)

6 tháng 12 2017

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{-c.-a.-b}{abc}=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{8abc}{abc}=8\)

Vậy....