Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-3+3^2-3^3+3^4...-3^{2003}+3^{2004}\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...-3^{2004}+3^{2005}\)
\(\Rightarrow3A+A=3^{2005}+1\)
\(\Rightarrow4A=3^{2005}+1\)
\(\Rightarrow4A-1=3^{2005}+1-1\)
\(\Rightarrow4A-1=3^{2005}\)
\(\Rightarrow4A-1\) là một lũy thừa của \(3\)
a. A = 4 + 22 + 23 + ... + 230
Đặt B = 22 + 23 + ... + 230
2B = 23 + 24 + ... + 231
2B - B = 231 - 22
B = 231 - 4
A = 4 + 231 - 4 = 231, là lũy thừa của 2
=> đpcm
b. A = 3 + 32 + 33 + ... + 3106
3A = 32 + 33 + 34 + ... + 3107
3A - A = 3107 - 3
2A = 3107 - 3
2A + 3 = 3107, là lũy thừa của 3
=> đpcm
Ủng hộ mk nha ^_-
3A = 3 - 3^2 + 3^3 - 3^4 + ... -3^2004 + 3^2005
3A + A = 3 - 3^2 + 3^3 -3^4 + ... -3^2004 + 3^2005 +1 - 3 + 3^2- 3^3 + 3^4 - ....-3^2003+3^2004
4A = 3^2005 + 1
=> 4A - 1 = 3^2005 là lũy thừa của 3 => ĐPCM
Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải.
Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2
Chia tổng trên thành 16 nhóm, mỗi nhóm 6 số hạng ta có:
S=(5+52+53+54+55+56)+56(5+52+53+54+55+56)+...+590(5+52+53+54+55+56)
=(5+52+53+54+55+56)(1+56+...+590)
Ta có
5+52+53+54+55+56=5(1+53)+52(1+53)+53(1+53)=126(5+52+53)⋮126
→S⋮126
S⋮5.2=10
Vậy tận cùng là 0
Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200
=> 2A = 2 + 22 + 23 + ....... + 2201
=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 )
=> A = 2201 - 1
=> A + 1 = 2201
A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200
2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201
2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )
A = 2 ^ 201 - 1
=> A + 1 = 2 ^ 201
B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005
3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006
3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )
- ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )
2B = 3 ^ 2006 - 3
=> 2B = 3 ^ 2006
Vậy 2B + 3 là lũy thừa của 3
Ta có : A = 4 + 2^2 + 2^3 + 2^4 + ... + 2^20
2A = 8 + 23 + 24 + 25 + ... + 221
suy ra 2A - A = ( 8 + 23 + 24 + 25 + ... + 221 ) - ( 4 + 2^2 + 2^3 + 2^4 + ... + 2^20 )
A = 221 + 8 - 4 - 22 = 221
Vậy A = 221 ( đpcm )
A = 4 + 22 + 23 + 24 + ... + 219 + 220
\(\Rightarrow\)2A = 2 . (4 + 22 + 23 + 24 + ... + 219 + 220)
= 8 + 23 + 24 + 25 + ... + 220 + 221 \(\)
Do đó 2A - A = (8 + 23 + 24 + 25 + ... + 220 + 221) - ( 4 + 22 + 23 + 24 + ... + 219 + 220)
\(\Rightarrow\)A = 8 + 221 - (4 + 22) = 221 + 8 - 8 = 221
Vậy A là lũy thừa của 2
mình chỉ biết câu a thui nha thông cảm
3S+2 =22017
Vậy là chứng minh được rồi ^ ^
Mình chỉ biết làm câu a thôi còn câu b bạn tự làm nhé
a) Ta có : \(S=2+2^3+2^5+2^7+.....+2^{2015}\)
\(\Rightarrow4S=2\cdot4+2^3\cdot4+2^5\cdot4+2^7\cdot4+...+2^{2015}\cdot4\)
\(\Leftrightarrow2^3+2^5+2^7+...+2^{2015}+2^{2017}\)
Mà S = ( 4S - S) :3
\(\Rightarrow S=\left[\left(2^3+2^5+2^7+..+2^{2017}\right)-\left(2+2^3+2^5+2^7+...+2^{2015}\right)\right]:3\)
\(=\frac{\left(2^{2017}-2\right)}{3}\)
=> 3S + 2 \(=3\cdot\frac{2^{2017}-2}{3}+2\)
\(=\frac{3\left(2^{2017}-2\right)}{3}+2\)
\(=\frac{2^{2017}-2}{1}+2\)
\(=2^{2017}-2+2\)
\(=2^{2017}\)
Mà 22017 là một lũy thừ của 2
=> 3S + 2 cũng là một lũy thừ của 2 (đpcm)