K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

\(A=1+3+3^2+...+3^{41}\)

\(3A=3+3^2+3^3+...+3^{42}\)

\(3A-A=3+3^2+...+3^{42}-1-3-...-3^{41}\)

\(2A=3^{42}-1\)

\(A=\dfrac{3^{42}-1}{2}\)

Ta có: \(2A+1\)

\(=2\cdot\dfrac{3^{42}-1}{2}+1\)

\(=3^{42}-1+1\)

\(=3^{42}\)

\(=\left(3^2\right)^{21}\)

\(=9^{21}\)

23 tháng 9 2016

a.

\(a^2\),\(4^3,8^2\)

B

\(a^3\),\(9^2,254^1\)

C

\(a^2\)và \(a^3\),\(54^2,36^3,48^4\)

13 tháng 9 2017

đơn giản

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

11 tháng 9 2018

tự làm đi

16 tháng 9 2018

( 2. 94 + 93 . 45 ) : ( 92 .10 -  92 )

9 tháng 9 2017

mk not biết

11 tháng 10 2016

42.83 = (22)2.(23)3 = 24.29 = 213

93.272 = (32)3.(33)2 = 36.36 = 312

82.253 = (23)2.(52)3 = 26.56 = (2.5)6 = 106

11 tháng 10 2016

a ) 42 . 83 = ( 22 ) 2 . ( 23 ) 3 = 22.2 . 23.3 = 24 . 29 = 24+9 = 213

b ) 93 . 272 = ( 32 ) 3 . ( 33 ) 2 = 32.3 . 33.2 = 36 . 36 = 36+6 = 312