Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Ghi nhớ:nếu a và b nguyên tố cùng nhau thì a và b chỉ có ước chung là 1
- gọi d là ước chung nếu có của cả a và b
==> a chia hết cho d nên 8a cũng chia hết cho d
đồng thời : b chia hết cho d nên b^2 cũng chia hết cho d ( b mũ 2 )
==> ( b^2 - 8.a ) chia hết cho d
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n^2 + n ) /2
và b^2 = ( 2n + 1 )^2 = 4n^2 + 4n + 1
==> : (b^2 - 8a ) = ( 4n^2 + 4n +1 ) - ( 4n^2 + 4n ) = 1
vậy : ( 8a -- b^2 ) chia hết cho d <==> 1 chia hết cho d => d = 1
kl : ước chung của a và b là 1 nên a và b nguyên tố cùng nhau
\(A=1+2+3+4+....+n=\frac{\left(n+1\right)n}{2}\)
Gọi: d=UCLN(A,B)
Ta có:
\(\hept{\begin{cases}\frac{\left(n+1\right)n}{2}⋮d\\2n+1⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n^2+n⋮d\\2n^2+n⋮d\end{cases}}\Leftrightarrow2n^2+n-n^2-n⋮d\Leftrightarrow n^2⋮d\)
\(\Leftrightarrow n^2+n-n^2⋮d\Leftrightarrow n⋮d\Leftrightarrow2n+1-2n⋮d\Leftrightarrow d=1\)
Vậy: A và B là 2 số nguyên tố cùng nhau
Ta có : \(a=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\) , b = 2n+1
Gọi ƯCLN(a,b)=d (\(d\ge1\))
Ta có : \(\begin{cases}\frac{n\left(n+1\right)}{2}⋮d\\2n+1⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}n\left(n+1\right)⋮d\\2n+1⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}4n^2+4n⋮d\\4n^2+4n+1⋮d\end{cases}\)
=> \(\left(4n^2+4n+1\right)-\left(4n^2+4n\right)⋮d\) hay \(1⋮d\)
=> \(d\le1\) mà \(d\ge1\Rightarrow d=1\)
=> đpcm