K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1!+2!+3!+4!=tận cùng 3  (1)

5!+6!+......+n!=tận cùng 0 (2)

Từ(1)và(2)=>1!+2!+......+n!(với n>3)=tận cùng 3

Vì a^b ko tận cùng là 3 (với b>1) nên ko có a thoả mãn bài toán.

ta chứng minh : A = 1!+2!+...+n! ko phải là số chính phương

ta có: 1!+2!+3!+4! chia 10 dư 3

5!+6!+...+n! chia hết cho 10

vậy A chia 10 dư 3 => A ko phải là số chính phương nên A ko thể là lũy thừa vs số mũ chẵn (1)

* chứng minh A ko thể là lũy thừa vs số mũ lẻ

+) với n 4 => 1!+2!+3!+4! = 33 ko là lũy thừa 1 số nguyên

+) n lớn hơn hoặc bằng 5

ta có: 1!+2!+3!+4!+5! chia hết cho 9

6!+7!+...+n! chia hết cho 9

=> A chia hết cho 9

+) ta thấy 9!+10!+...+n! chia hết cho 7

còn 1!+2!+...+8! chia 27 dư 9 (2)

từ (1) và (2) => A ko phải là lũy thừa của 1 số nguyên ( vs n>3 ; b>1 )

14 tháng 4 2017

a) Ta có:

\(\frac{1}{n-1}-\frac{1}{n}=\frac{n-\left(n-1\right)}{n\left(n-1\right)}=\frac{1}{n\left(n-1\right)}>\frac{1}{n.n}=\frac{1}{n^2}\left(1\right)\)

\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}< \frac{1}{n.n}=\frac{1}{n^2}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:

\(\frac{1}{n\left(n-1\right)}>\frac{1}{n^2}>\frac{1}{n\left(n+1\right)}\)

Hay \(\frac{1}{n-1}-\frac{1}{n}>\frac{1}{n^2}>\frac{1}{n}-\frac{1}{n+1}\) (Đpcm)

15 tháng 6 2015

* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương

Ta có 1!+2!+3!+4! chia 10 dư 3

5!+6!+....+n! chia hết cho 10

Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn      (1)

* Chứng mịnh A không thể là lũy thừa với mũ lẻ

+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên

+) Với n lớn hơn hoặc bằng 5

Ta có 1!+2!+3!+4!+5! chia hết cho 9

6!+7!+....+n! chia hết cho 9

=> A chia hết cho 9

+) Ta thấy 9!+10!+...+n! chia hết cho 7

còn 1!+2!+...+8! chia cho 27 dư 9            (2)

Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)

15 tháng 6 2015

oggy và những chú gián làm chừng chừng

20 tháng 8 2017

ta có

a,\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow a+m< b+m\)

vì \(a+m< b+m\)

nên \(\frac{a+m}{b+m}< 1\)

b,Ta có    \(a+b>1\Leftrightarrow a+m>b+m\)

Vì \(a+m>b+m\)

nên \(\frac{a+m}{b+m}>1\)

21 tháng 7 2016

a) Vì a > b

=> a.n > b.n

=> a.n + a.b > b.n + a.b

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n ( đpcm)

Câu b và c lm tương tự

25 tháng 1 2018

Tham khảo theo link này nhé!

Chứng minh: 1/2^3 + 1/3^3 + 1/4^3 + ... + 1/n^3 < 1/4 với n thuộc N, n ≥ 2 - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

29 tháng 6 2020

\(A< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left(n-1\right)\cdot n\cdot\left(n+1\right)}\)

Nhận xét: mỗi số hạng tổng có dạng

\(\frac{1}{\left(n-1\right)\cdot n\cdot\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n\left(n-1\right)}-\frac{1}{n\left(n+1\right)}\right)\)

Từ đó suy ra: \(A< \frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\right)< \frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}\left(đpcm\right)\)