K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

Ta thấy từng số hạng của A chia cho 3 dư 1 (cái này cũng là định lý fecmat nhưng làm dài dòng lắm)

Nên A chia cho 3 có số dư là 60 mà 60 chia hết cho 3 Nên A chia hết cho 3

b, Thì lấy 2A-A sẽ ra

c, Mình ko bt làm

15 tháng 2 2016

Ta có:

Ư(13)={1;13}

11 tháng 2 2016

b) Ta có

     A = 3 + 32 + ... + 32004.

=> A = 3 ( 1+ 3 + 32 ) + 34  ( 1+ 3 + 32 ) + ... + 32001 ( 1+ 3 + 32 )

=> A = 3 . 13 + 34 . 13 + ... + 32001 . 13

=> A = 13 ( 3 + 34 + ... + 32001)  chia hết cho 13.

   Lại có :

     A = 3 + 32 + ... + 32004.

=> A = ( 3 + 33) + (32 + 34) + ... + ( 32002 + 32004)

=> A = 3 ( 1+ 9) + 32 ( 1+ 9) + ... + 32003 ( 1+ 9)

=> A = 10 ( 3 + 32 + ... + 3 2003) chia hết cho 10.

 Vậy A vừa chia hết cho 13 vừa chia hết cho 10 mà ( 13;10) = 1

=> A chia hết cho 130.

30 tháng 3 2017

A=3+32+33+......+32004

3A=32+33+......+32005

3A-A= ( 32+33+......+32005 ) - ( 3+32+33+......+32004 )

2A=32005-3

A=\(\frac{3^{2005}-3}{2}\)

11 tháng 2 2016

210 duyệt nhé

11 tháng 2 2016

ủng hộ mình lên 300 nhé các bạn

5 tháng 11 2017

a, Có 1=0.1+1

         2=1.2+2

         .....

         1999=1998.1999+1999

=> A = 0.1+1.2+....+1998.1999 + (1+2+....+1999)

Xét B = 1+2+....+1999 = (1+1999).[ (1999-1):2 + 1 ] :2 = 1999 . 2000 : 2

C =0.1+1.2+....+1998.1999

= 1.2+2.3+....+1998.1999

3C = 1.2.3+2.3.3+.....+1998.1999.3 = 1.2.(3-0)+2.3.(4-1)+....+1998.1999.(2000-1997)

= 1.2.3 - 1.2.0 + 2.3.4 - 1.2.3 + .... + 1998.1999.2000-1997.1998.1999 = 1998.1999.2000

=> C = 1998.1999.2000:3 

=> A = B+C = 1999.2000/2 + 1998.1999.2000/3 = (1999.2000.3+1998.1999.2000.2)/6 = 1999.2000.(3+1998.2)/6

= 1999.2000.3999/6 = 1999.1000.1333

12 tháng 2 2016

Có ai làm đc chưa vậy

 

12 tháng 2 2016

Ai giải giùm đi. Đang cần gấp nè

14 tháng 10 2018

a, \(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{99}+3^{100}\right)\)

\(=\left[3\left(1+3\right)\right]+\left[3^3\left(1+3\right)\right]+...+\left[3^{99}\left(1+3\right)\right]\)

\(=3\cdot4+3^3\cdot4+....+3^{99}\cdot4\)

\(=4\left(3+3^3+...+3^{99}\right)\)

\(\Rightarrow B⋮4\)

b, Vì 3 chia hết cho 3

3chia hết cho 3

.

.

.

3100 chia hết cho 3

\(\Rightarrow B⋮3\)

c,\(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)

\(=\left(3+3^2\right)+\left(3^3+2^4\right)+....+\left(3^{99}+3^{100}\right)\)

\(=12+\left[3^2\left(3+3^2\right)\right]+....+\left[3^{97}\left(3+3^2\right)\right]\)

\(=12+3^2\cdot12+....+3^{97}\cdot12\)

\(=12\left(1+3^2+...+3^{97}\right)\)

\(\Rightarrow B⋮12\)