K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2018

Ta có: A = 1 + 2 + 2 2  + 2 3 + ... + 2 2008  + 2 2009  + 2 2010

 

= 1 + 2 ( 1 + 2 + 22 ) + ... +  2 2008  ( 1 + 2 + 22 )

= 1 + 2 ( 1 + 2 + 4 ) + ... +  2 2008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... + 2 2008 . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

17 tháng 5 2015

\(1+2+2^2+...+2^{2009}+2^{2010}\)

\(1+\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

=\(1+2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

=\(1+\left(2+2^4+...+2^{2008}\right)\left(1+2+2^2\right)\)

=\(1+\left(2+2^4+...+2^{2008}\right)7\)

=>\(1+2+2^2+...+2^{2009}+2^{2010}\) chia cho 7 dư 1

 

20 tháng 12 2015

A =1+ (2+22+23) + ( 24+25+26 ) + .....+ ( 22008 +22009+22010)  = 1+ 7 .( 2+24 + 27 +.....+ 22008)

=> A chia 7 dư 1

20 tháng 12 2015

ta co : 

A=20+21+22+...22009+22010

=>A=(20+21+22)+...+(22008+22009+22010)

=>A=(2^0+2^1+2^2)+...+2^2008.(2^0+2^1+2^2)

=>A=(1+...+2^2008).7 chia het cho 7 

=>A chia het cho 7 

=>A chia het cho 7 du 0

**** nhe

26 tháng 12 2017

Ta có :

\(A=1+2+2^2+.........+2^{2009}+2^{2010}\)

\(\Leftrightarrow A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+.......+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(\Leftrightarrow A=1\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...........+2^{2008}\left(1+2+2^2\right)\)

\(\Leftrightarrow A=1.7+2^3.7+.........+2^{2008}.7\)

\(\Leftrightarrow A=7\left(1+2^3+......+2^{2008}\right)⋮7\)

Vậy A chia 7 dư 0

10 tháng 1 2016

1+2+22+..........+22009+22010

=(1+2+22)+.........+(22007+22008+22009)+22010

=7+..........+22007.(1+2+22)+22010

=7+..........+22007.7+22010

=>A chia 7 dư 22010

Ta có:23=8 đồng dư với 1(mod 7)

=>(23)670=22010 đồng dư với 1670(mod 7)

=>22010 đồng dư với 1(mod 7)

=>22010 chia 7 dư 1

=>A chia 7 dư 1

10 tháng 1 2016

giải chi tiết ra giúp mk !

18 tháng 12 2014

Cứ cơ số 2 có mũ lẻ thì số đó chia cho 3 dư 1, mũ chẵn thì chia 3 dư 2

Cứ 1 cặp như vậy cộng lại thì sẽ chia hết cho 3 ( vd: 2^0 + 2^1 ; 2^2 + 2^3 ;...)

Vậy từ 2^3 đến 2^2010 có 1004 cặp chia hết cho 3 như thế

Vậy chỉ còn lại 2^0 + 2^1 + 2^2 = 7, chia cho 3 dư 1

Đáp án: dư 1

12 tháng 12 2016

chả hiểu

24 tháng 11 2019

Ta có :

\(A=1+2+2^2+2^3+...+2^{2009}+2^{2010}\)

   \(=1+\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

   \(=1+7+2^4\left(2+2^2+2^3\right)+...+2^{2008}\left(2+2^2+2^3\right)\)

   \(=1+7+2^4.7+2^7.7+...+2^{2008}.7\)

\(\Rightarrow A:7\)dư 1.

#Ngụy

#Fallen_Angel

24 tháng 11 2019

Ta có : A = 1 + 2 + 22 + 23 + .... + 22009 + 22010 

Đặt B = 2 + 22 + 23 + .... + 22009 + 22010 

Khi đó A = 1 + B

Lại có : B = 2 + 22 + 23 + .... + 22009 + 22010 

                = (2 + 22 + 23) + (24 + 25 + 26) +.... + (22008 + + 22009 + 22010)     

                = (2 + 22 + 23)  + 23.(2 + 22 + 23)  + ... + 22007.(2 + 22 + 23

                = 14 + 23.14 + .... + 22007.14

                = 14.(1 + 23 + ... + 22007)

                = 2.7.(1 + 23 + ... + 22007\(⋮7\)

=> \(B⋮7\)

=> (B + 1) : 7 dư 1

=> A : 7 dư 1

Vậy số dư khi A : 7 là 1

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

1. Bạn xem lại, hạng tử cuối là $2^{2010}$ hay $2^{2011}$

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

2.

Vì $x\vdots 4$ nên $x=4k$ với $k$ nguyên.

Ta có: $2010< x< 2025$
$\Rightarrow 2010< 4k< 2025$

$\Rightarrow 502,5< k< 506,25$

$\Rightarrow k\in \left\{503; 504; 505; 506\right\}$

$\Rightarrow x\in \left\{2012; 2016; 2020; 2024\right\}$

13 tháng 12 2016

Giải

Ta có : A = ( 20 + 21 ) + ( 22 + 23 ) +....... + ( 22009 + 22010 )

A = 20 . ( 1 + 2 ) + 22 . ( 1 + 2 ) + ...... + 22009 . ( 1 + 2 )

A = 20 . 3 + 22 . 3 + 24 . 3 + ....... + 22009 .3

A = 3 . ( 20 + 22 + 24 + ..... + 22009 )

=> A chia hết cho 3

13 tháng 12 2016

số dư là 0