K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2019

Với a > 0, b > 0 ta có:

a < b ⇒ a.a < a.b ⇒  a 2  < ab (1)

a < b ⇒ a.b < b.b ⇒ ab <  b 2  (2)

5 tháng 5 2017

a. Do \(a>0,\) \(b>0\) \(\Rightarrow a,b\) là số dương

Ta có:

* \(a< b\Leftrightarrow a^2< ab\) (nhân cả hai vế với a)

* \(a< b\Leftrightarrow ab< b^2\) (nhân cả hai vế với b)

b. Từ câu a theo tính chất bắc cầu suy ra:\(a^2< b^2\)

Ta có: \(a^2< b^2\Leftrightarrow a^3< ab^2\) (nhân cả hai vế với a)

ab2<b3 (a<b)

\(\Rightarrow a^3< b^3\)

10 tháng 4 2017

a)

\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\forall a,b\) {cơ bản nhất, cần thiết nhất}

\(\Rightarrow a^2+b^2\ge ab\) đẳng thức khi a=b=0

b)Nhân 2 hai vế chuyển hết về VT

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(a^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

Hiển nhiên tổng 3 số không âm => không âm

đẳng thức khi \(\left\{{}\begin{matrix}a-b=0\\a=1\\b=1\end{matrix}\right.\) \(\Rightarrow a=b=1\)

24 tháng 8 2016

a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc

b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)

5 tháng 6 2019

Giả sử \(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)(Vì a, b, c > 0)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ab+bc\)

\(\Leftrightarrow ac< bc\)(Đúng vì c > 0 và a < b)

Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\)(đpcm)

Trả lời:

Ta có:

\(\frac{a}{b}< \frac{a+c}{b+c}\)

⇔ a(b + c) < (a + c)b

(vì a > 0, b > 0 và c > 0 ⇔ b + c > 0 và a + c > 0)

⇔ ab + ac < ab + bc

⇔ ac < bc ⇔ a < b (luôn đúng, theo gt)

4 tháng 7 2017

Bất phương trình bậc nhất một ẩn

Số \(ab>0\), nên \(\dfrac{1}{ab}>0\). Từ \(a>b\), nhân cả hai vế của bất đẳng thức với số \(\dfrac{1}{ab}\), có bất đẳng thức \(\dfrac{1}{a}< \dfrac{1}{b}\)

20 tháng 4 2017

Thì tử số giống nhau

Mẫu số càng lớn thì càng bé

Mà nếu là âm thì mẫu số càng lớn thì càng lớn

Đúng 100%

Đúng 100%

Đúng 100%

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(đpcm)

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

Nếu a>0 và b>0 thì a+c>b+c

Nếu a<0 và b<0 thì a+c<b+c

Nếu a>b và c>0 thì ac>bc

Nếu a>c và c<0 thì ac<bc

19 tháng 5 2020
https://i.imgur.com/b053PE5.jpg