\(\frac{5+3^x+3^{-x}}{1-3^x-3^{-x}}\) c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

ta có X =log(9,23/2)

TỪ ĐÓ THẤY X VÀO BIỂU THỨC THÌ TA RA ĐC ĐÁP ÁN .

NV
24 tháng 11 2019

Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)

a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)

Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)

\(\Rightarrow9x^2dx=-6udu\)

\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)

b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)

\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)

c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)

\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)

NV
24 tháng 11 2019

d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)

\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)

\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)

e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)

\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)

f/ \(I=\int cosx.sin^3xdx\)

Đặt \(u=sinx\Rightarrow du=cosxdx\)

\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)

AH
Akai Haruma
Giáo viên
29 tháng 10 2017

Lời giải:

Câu 1:

\(5^{2x}=3^{2x}+2.5^x+2.3^x\)

\(\Leftrightarrow 5^{2x}-2.5^x+1=3^{2x}+2.3^x+1\)

\(\Leftrightarrow (5^x-1)^2=(3^x+1)^2\)

\(\Leftrightarrow (5^x-1-3^x-1)(5^x-1+3^x+1)=0\)

\(\Leftrightarrow (5^x-3^x-2)(5^x+3^x)=0\)

Vì \(3^x,5^x>0\Rightarrow 3^x+5^x>0\), do đó từ pt trên ta có \(5^x-3^x=2\)

\(\Leftrightarrow 5^x=3^x+2\)

TH1: \(x>1\)

\(\Rightarrow 5^x=3^x+2< 3^x+2^x\)

\(\Leftrightarrow 1< \left(\frac{3}{5}\right)^x+\left(\frac{2}{5}\right)^x\)

Vì bản thân \(\frac{2}{5},\frac{3}{5}<1\), và \(x>1\Rightarrow \left(\frac{2}{5}\right)^x< \frac{2}{5};\left(\frac{3}{5}\right)^x<\frac{3}{5}\)

\(\Rightarrow \left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x< 1\) (vô lý)

TH2: \(x<1 \Rightarrow 5^x=3^x+2> 3^x+2^x\)

\(\Leftrightarrow 1>\left(\frac{3}{5}\right)^x+\left(\frac{2}{5}\right)^x\)

Vì \(\frac{2}{5};\frac{3}{5}<1; x<1\Rightarrow \left(\frac{3}{5}\right)^x> \frac{3}{5}; \left(\frac{2}{5}\right)^x>\frac{2}{5}\Rightarrow \left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x>1\)

(vô lý)

Vậy \(x=1\)

AH
Akai Haruma
Giáo viên
29 tháng 10 2017

Câu 2:

Ta có \(1+6.2^x+3.5^x=10^x\)

\(\Leftrightarrow \frac{1}{10^x}+6.\frac{1}{5^x}+3.\frac{1}{2^x}=1\)

\(\Leftrightarrow 10^{-x}+6.5^{-x}+3.2^{-x}=1\)

Ta thấy, đạo hàm vế trái là một giá trị âm, vế phải là hàm hằng có đạo hàm bằng 0, do đó pt có nghiệm duy nhất.

Thấy \(x=2\) thỏa mãn nên nghiệm duy nhất của pt là x=2

Câu 3:

\(6(\sqrt{5}+1)^x-2(\sqrt{5}-1)^x=2^{x+2}\)

Đặt \(\sqrt{5}+1=a\), khi đó sử dụng định lý Viete đảo ta duy ra a là nghiệm của phương trình \(a^2-2a-4=0\)

Mặt khác, từ pt ban đầu suy ra \(6.a^x-2\left(\frac{4}{a}\right)^x=2^{x+2}\)

\(\Leftrightarrow 6.a^{2x}-2^{x+2}a^x-2^{2x+1}=0\)

\(\Leftrightarrow 2(a^x-2^x)^2+4(a^{2x}-2^{2x})=0\)

\(\Leftrightarrow 2(a^x-2^x)^2+4(a^x-2^x)(a^x+2^x)=0\)

\(\Leftrightarrow (a^x-2^x)(6a^x+2^{x+1})=0\)

Dễ thấy \(6a^x+2^{x+1}>0\forall x\in\mathbb{R}\Rightarrow a^x-2^x=0\)

\(\Leftrightarrow (\sqrt{5}+1)^x=2^x\Leftrightarrow x=0\)

NV
8 tháng 8 2020

\(y=\left(x^2+x+m\right)^2=\left[\left(x+\frac{1}{2}\right)^2+m-\frac{1}{4}\right]^2\)

Đặt \(x+\frac{1}{2}=t\Rightarrow-\frac{3}{2}\le t\le\frac{5}{2}\)\(\frac{1}{4}-m=n\)

\(\Rightarrow y=f\left(t\right)=\left(t^2-n\right)^2=t^4-2nt^2+n^2\)

Hàm trùng phương nên đồ thị đối xứng qua \(t=0\)

\(f'\left(t\right)=4t\left(t^2-n\right)=0\Rightarrow\left[{}\begin{matrix}t=0\\t^2=n\end{matrix}\right.\)

- Nếu \(n\le0\Rightarrow f'\left(t\right)=0\) có nghiệm duy nhất \(t=0\)

\(\Rightarrow f\left(t\right)_{min}=f\left(0\right)=n^2=4\Rightarrow n=-2\Rightarrow m=\frac{9}{4}\)

- Nếu \(n>0\) ta chỉ cần quan tâm 2 nghiệm \(\left[{}\begin{matrix}t=\sqrt{n}\\t=-\sqrt{n}\end{matrix}\right.\) do \(t=0\) là cực đại nên min ko thể xảy ra tại đây

+TH1: \(n>\frac{25}{4}\Rightarrow f\left(t\right)_{min}=f\left(\frac{5}{2}\right)=\left(n-\frac{25}{4}\right)^2=4\)

\(\Rightarrow n=\frac{33}{4}\Rightarrow m=-8\)

+ TH2: \(0\le n\le\frac{25}{4}\Rightarrow f\left(t\right)_{min}=0\ne4\) (ktm)

Vậy \(\left[{}\begin{matrix}m=\frac{9}{4}\\m=-8\end{matrix}\right.\) \(\Rightarrow B\)

8 tháng 8 2020

Cho mình hỏi là sao mình tìm khoảng giá trị của x2+x xong rồi tìm giá trị min trên đoạn [-2;2] thì sẽ ra

(m-\(\frac{1}{4}\))2=4 thì lại không được nhỉ ??

NV
4 tháng 5 2019

\(y'=\frac{5\left(x^2+4\right)-2x.5x}{\left(x^2+4\right)}f'\left(\frac{5x}{x^2+4}\right)=\frac{5\left(4-x^2\right)}{x^2+4}f'\left(\frac{5x}{x^2+4}\right)\)

\(=\frac{5\left(2-x\right)\left(2+x\right)}{\left(x^2+4\right)}.\left(\frac{5x}{x^2+4}\right)^2.\left(\frac{5x}{x^2+4}-1\right)\left(\frac{65x}{x^2+4}-15\right)^3\)

\(=\frac{5\left(2-x\right)\left(2+x\right).25x^2\left(x-4\right)\left(1-x\right)\left(x-3\right)^3\left(4-3x\right)^3.5^3}{\left(x^2+4\right)^7}\)

Ta thấy \(y'=0\) có 7 nghiệm nhưng nghiệm \(x=0\) có mũ chẵn nên hàm số có 6 điểm cực trị

các bạn giải giúp mình mấy câu bất đẳng thức này với 1) tìm GTLN a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\) b)y=\(\dfrac{x}{x^2+2}\) x>0 2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\) 3)cho x,y>0 thỏa mãn x+y=2 . CM a)xy(x2+y2)\(\le2\) b)x3y3(x3+y3)\(\le2\) 4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\) tìm GTLN A= (3-x)(4-y)(2x+3y) 5)...
Đọc tiếp

các bạn giải giúp mình mấy câu bất đẳng thức này với

1) tìm GTLN

a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)

b)y=\(\dfrac{x}{x^2+2}\) x>0

2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)

3)cho x,y>0 thỏa mãn x+y=2 . CM

a)xy(x2+y2)\(\le2\)

b)x3y3(x3+y3)\(\le2\)

4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\)

tìm GTLN A= (3-x)(4-y)(2x+3y)

5) biết x,y,z,u\(\ge0\)và 2x+xy+z+yzu=1

tìm GTLN của P=x2y2z2u

6)cho a,b,c>0 và a+b+c=3 .CMR:\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

7) cho 3 số dương x,y,z có tổng bằng 1 .CMR : \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{xz}{xz+y}}\le\dfrac{3}{2}\)

8)cho 3 số dương a,b,c có tổng bằng 3 .

tìm GTLN của S=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)

ko cần làm chi tiết lắm chỉ cần hướng dẫn là đc zùi

3
17 tháng 2 2019

\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)

\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)

Tương tự cho các số còn lại rồi cộng vào sẽ được

\(S\le\dfrac{3}{2}\)

Dấu "=" khi a=b=c=1

Vậy

17 tháng 2 2019

\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)

\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)

Cmtt rồi cộng vào ta đc đpcm

Dấu "=" khi x = y = z = 1/3