Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8x^2+\dfrac{1}{4x^2}+y^2-4=0\)
\(\left(\left(2\sqrt{2}x\right)-\dfrac{\sqrt{2}}{2}.\dfrac{1}{x}\right)^2+y^2=0\)
Cần y=0 => P=0
1) M = \(x^2+y^2-xy-x+y+1\)=\(x\left(x-y\right)-\left(x-y\right)+\left(y^2-1\right)\)=\(\left(x-1\right)\left(x-y\right)+\left(y^2-1\right)\)
Vậy Mmin =\(\left(y^2+1\right)\)khi \(x-1=0\)hoặc \(x-y=0\)
=> \(x=1\) =>\(x=y\)
Mình chỉ có thể giúp bạn câu 1 thôi
Lời giải:
ĐKĐB $\Leftrightarrow (x^2+4y^2-4xy)+8x=5$
$\Leftrightarrow (x-2y)^2+8x=5$.
Đặt $x-2y=a; x=b$ thì bài toán trở thành:
Cho $a,b$ thực thỏa mãn $a^2+8b=5$. Tìm max của $B=-2a+8b$
Áp dụng BĐT AM-GM:
$a^2+1\geq 2\sqrt{a^2}=2|a|\geq -2a$
$\Rightarrow a^2+1\geq -2a$
$\Rightarrow a^2+8b+1\geq -2a+8b$
$\Leftrightarrow 6\geq B$. Vậy $B_{\max}=6$
A = ( x^2 + xy + y^2) + ( 4x^2 + 8x + 16) + ( y^2 + 4y + 4) - 5
= ( x + y )^2 + ( 2x + 4 )^2 + ( y + 2)^2 - 5
= > GTNN của A là -5