Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Số phần tử của không gian mẫu là số các tổ hợp chập 3 của 8 phần tử
Gọi A là biến cố “Lấy được 3 quả cân có tổng trọng lượng không vượt quá 9kg”
n(A) = 7
Xác suất xảy ra biến cố A là:
P ( A ) = 7 56 = 1 8 a
Gọi A là biến cố chọn được 3 quả cân có tổng trọng lượng không vượt quá 9 kg.
Suy ra A có các trường hợp sau:
A = { (1, 2, 3); (1, 2, 4); (1, 2, 5); (1, 2, 6); (1, 3, 4); (1, 3, 5); (2, 3, 4)}
⇒P=7C83=18
Vậy xác suất để trọng lượng 3 quả cân được chọn không quá 9 kg là:
Lời giải:
Chọn ngẫu nhiên 3 quả cân trong số 8 quả cân, có $C^3_8=56$ cách chọn
Chọn 3 quả cân mà trọng lượng không vượt quá 9 kg có các TH sau:
$(1,2,3); (1,2,4); (1,2,5); (1,2,6); (1,3,4); (1,3,5); (2,3,4)$ (có 7 cách chọn)
Do đó xác suất để chọn được 3 quả cân có trọng lượng không vượt quá 9kg là: $\frac{7}{56}=\frac{1}{8}$
Đáp án D
Chọn ngẫu nhiên 3 quả cân từ 8 quả cân có cách.
Suy ra
Gọi A là biến cố: “chọn được 3 quả cân có tổng khối lượng không quá 9kg”
Khi đó A={(1;2;3), (1;2;4), (1;2;6), (1;3;4), (1;3;5), (2;3;4)}
Suy ra n(A)=7
Vậy xác suất cần tìm là
a, Gọi T là biến cố "Trong 4 quả lấy ra có 3 quả cầu trắng".
\(\left|\Omega\right|=C^4_{15}\)
\(\left|\Omega_T\right|=C^3_7.C^1_8\)
\(\Rightarrow P\left(T\right)=\dfrac{\left|\Omega_T\right|}{\left|\Omega\right|}=\dfrac{C^3_7.C^1_8}{C^4_{15}}=\dfrac{8}{39}\)
Chọn A
Số cách lấy ra 6 quả cầu từ 10 quả cầu là
Gọi A là biến cố ‘‘Trong 6 quả cầu lấy ra có không quá 1 quả cầu trắng”.
là biến cố‘‘Trong 6 chi tiết lấy ra có 2 quả cầu trắng”.
Số cách lấy 4 quả cầu từ 6quả cầu đỏ và vàng là .
Số cách lấy 2 quả cầu trắng là .
Theo quy tắc nhân ta có .
Vậy xác suất
.
Xác suất lấy ra quả cầu không có số 1 hoặc số 5 từ túi đầu tiên: \(\frac{8}{{10}} = \frac{4}{5}\)
Xác suất lấy được quả cầu không có số 1 hoặc số 5 từ túi thứ hai là: \(\frac{8}{{10}} = \frac{4}{5}\)
Vì lấy ngẫu nhiên từ hai túi khác nhau một quả cầu nên hai biến cố quả cầu lấy ra mỗi túi không có số 1 hoặc số 5 là độc lập.
Vậy xác suất để trong hai quả cầu được lấy ra không có quả cầu nào ghi số 1 hoặc ghi số 5 là: \(\frac{4}{5}.\frac{4}{5} = \frac{{16}}{{25}}\)
tham khảo
A là biến cố "Hai quả bóng lấy ra đều có màu xanh", \(P\left(A\right)=\dfrac{C^2_5}{C^2_9}\)
B là biến cố "Hai quả bóng lấy ra đều có màu đỏ", \(P\left(B\right)=\dfrac{C^2_4}{C^2_9}\)
\(A\cup B\) là biến cố "Hai bóng lấy ra có cùng màu". A và B xung khắc nên:
\(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)=\dfrac{4}{9}\)
\(\Rightarrow C\)
Đáp án C
Các trường hợp thuận lợi là (6;2;1), (5;2;1), (5;2;1), (4;3;2), (4;3;1), (4;2;1), (3;2;1).
Không gian mẫu Ω = C 8 3 = 56 ⇒ p = 7 56 = 1 8 .