Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 6MK+ 4AB+ CB=0
6MK+ 4AM+ 4MB+ CM+ MB=0
4AK+ CK+ MK+ 5MB=0
4GC+ GA+ MA+ GC+ 5 MG+ 5GB=0
4GC+ MA+ 5MG+ 4GB=0
4GC+ 4GA+4GB=0
=> Thỏa mãn yêu cầu đề bài
2)
* áp dụng tính chất đường phân giác chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy.
=> CD/AC=DB/AB
<=> 6CD= 8DB
=> 6 vectoCD= 8vectoDB
6CD+ 8BD=0
6CA+ 6AD+ 8 BA+ 8AD=0
14AD= 6AC+ 8AB
AD=3/7AC+ 4/7AB
* cũng áp dụng tính chất đường phân giác
EB/EC=AB/AC
8EB=6EC
=> 8 vecto EB= 6vecto EC
8EA+ 8AB= 6EA+ 6AC
2EA= 6AC- 8AB
EA= 3AC- 4AB
a) Cm: vt IM + vt IN + vt IP=1/2(vt IA + vt IB + vt IC + vt ID + vt IE + vt IF) với mọi I
2vt IM+2vt IN +2vt IP =( vt IA+vt IB )+( vt IC +vt ID )+ (vt IE +vt IF)
<=>2(vt IM + vt IN + vt IP )= vt IA + vt IB + vt IC + vt ID + vt IE + vt IF
<=>vt IM + vt IN + vt IP = 1/2(vt IA + vt IB + vt IC + vt ID + vt IE + vt IF)
a, Gọi D là trung điểm của MN \(\Rightarrow\overrightarrow{MN}=2\overrightarrow{MD}\).
Ta có: \(\overrightarrow{NA}+3\overrightarrow{NC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{AN}=3\overrightarrow{NC}\) \(\Leftrightarrow AN=3NC\)
\(\overrightarrow{MD}=\overrightarrow{AD}-\overrightarrow{AM}=\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)-\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AN}-\frac{1}{2}\overrightarrow{AM}\)
\(\overrightarrow{MD}=\frac{3}{8}AC-\frac{1}{4}\overrightarrow{AB}\Rightarrow\overrightarrow{MN}=\frac{3}{4}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}\)
Bạn tự hiểu tất cả bên dưới đều là vecto nhé:
\(=AB\left(DB+BC\right)+BC.DA+CA.DB\)
\(=AB.DB+AB.BC+BC.DA+CA.DB\)
\(=DB\left(AB+CA\right)+BC\left(AB+DA\right)\)
\(=DB.CB+BC.DB\)
\(=DB\left(CB+BC\right)=0\)