Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)
VT:\(\overrightarrow{AB}+\overrightarrow{CD}\)
=\(\overrightarrow{AC}+\overrightarrow{CB}+\overrightarrow{CA}+\overrightarrow{AD}\)
=\(\overrightarrow{AB}+\overrightarrow{CB}=0\left(đpcm\right)\)
b.\(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}=\overrightarrow{ED}+\overrightarrow{CB}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}+\overrightarrow{DE}+\overrightarrow{BC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{EA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AE}+\overrightarrow{EA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\left(LĐ\right)\)
a: Xét ΔEAB và ΔCAD có
AE=AC
góc EAB=góc CAD
AB=AD
Do đo: ΔEAB=ΔCAD
=>BE=CF
b: Xét tứ giác EDCB có
A là trung điểm của EC và DB
nên EDCB là hình bình hành
=>ED//BC và ED=BC
c: Xét tứ giác EMCN có
EM//CN
EM=CN
Do đó: EMCN là hình bình hành
=>EC cắt MN tại trung điểm của mỗi đường
=>M,A,N thẳng hàng
2: ta có: \(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{FE}=\overrightarrow{AE}+\overrightarrow{CB}+\overrightarrow{FD}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{FE}+\overrightarrow{EA}=\overrightarrow{CB}+\overrightarrow{FD}+\overrightarrow{DC}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{FA}=\overrightarrow{CB}+\overrightarrow{FC}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{FC}-\overrightarrow{FA}\)
\(\Leftrightarrow\overrightarrow{AC}=\overrightarrow{AC}\)(đúng)
Chắc là toàn vecto???
a/ \(=\left(\overrightarrow{EA}+\overrightarrow{AB}\right)+\left(\overrightarrow{BC}+\overrightarrow{CD}\right)=\overrightarrow{EB}+\overrightarrow{BD}=\overrightarrow{ED}\)
b/ \(=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{CD}+\left(\overrightarrow{DF}+\overrightarrow{FE}\right)\)
\(=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DE}=\overrightarrow{AD}+\overrightarrow{DE}=\overrightarrow{AE}\)