Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = \(\theta\)
D = \(\theta\)
E là tập hợp có vô số phần tử
a, => x^3 < 0 ; x-3 > 0 hoặc x^3 > 0 ; x-3 < 0
=> 0 < x < 3
b, => x^4.(2x-8) < 0
=> x^4.(x-4) < 0
Vì x^4 >= 0
=> x-4 < 0
=> x < 4
c, Vì x-1 < x+12
=> x-1 < 0 ; x+12 >0
=> -12 < x < 1
d, => x-12 > 0 ; x-1 > 0 hoặc x-12 < 0 ; x-1 < 0
=> x >12 hoặc x < 1
Tk mk nha
a)x2(3-x)=0
\(\Rightarrow\orbr{\begin{cases}x=0\\3-x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
b)|2x+1|<3
Vì gái trị tuyệt đối là đương
\(\Rightarrow\hept{\begin{cases}2x+1=2\\2x+1=1\\2x+1=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=1\\2x=0\\2x=-1\end{cases}\Rightarrow}\hept{\begin{cases}xkoTM\\x=0\\xkoTM\end{cases}}\)
a) x.(x-1)=0
\(\Rightarrow\)x=0 hoặc x-1=0
\(\Rightarrow\)x=0+1
\(\Rightarrow\)x=1
vậy x=1 hoặc x=0
b) -x.(x+3)=0
\(\Rightarrow\)-x = 0 hoặc x+3 = 0
\(\Rightarrow\)x= 0-3
\(\Rightarrow\)x=-3
vậy x=0 hoặc x=-3
c) (2x-4).(x+2)=0
(2x-4)= 0
2x=0+4
2x=4
x=4:2
x=2
hoặc (x+2)=0
x= 0-2
x=-2
vậy x=2 hoặc x=-2
d) (3-x).|x+5|=0
3-x = 0
x= 3-0
x=3
hoặc |x+5|=0
x+ 5=0
x=0-5
x=-5
vậy x=3 hoặc x=-5
e) (|x|+1).( 4-2x) = 0
(|x|+1) =0
|x|= 0-1
|x|=-1
hoặc( 4-2x) = 0
2x=4-0
2x=4
x=4:2
x=2
g) x2+5x=0
x2=0
x=0
hoặc 5x=0
x= 0: 5
x=0
vậy x=0
2)
a) (x+3).(y-5)= 7
(x+3)và (y-5)\(\in\)Ư(7)=\(\left\{1;-1;7;-7\right\}\)
x+3 | 1 | 7 | -1 | -7 |
y-5 | 7 | 1 | -7 | -1 |
x | -2 | 4 | -4 | -10 |
y | 12 | 6 | 2 | 4 |
b) xy + 3x - 2y= 11
x( y+3) -2y=11
x(y-3)- 2( y+3) +6 = 11
( y+3) ( x-2) = 5
vì x,y thuộc Z \(\Leftrightarrow\)y+3 và x-2 \(\in\)Z
do đó y+3 và x-2 \(\in\)Ư ( 5)= \(\left\{1;5;-1;-5\right\}\)
y+3 | 1 | 5 | -1 | -5 |
x-2 | 5 | 1 | -5 | -1 |
y | -2 | 2 | -4 | -8 |
x | 7 | 3 | -3 | 1 |
\(\in\)\(\in\)
c) xy + 3x - 7y= 21
x( y+3) -7y= 21
x( y+3) - 7( y+3)+21= 21
(y+3)( x-7) =0
y+3 | 0 | |
x-7 | 0 | |
y | -3 | |
x | 7 |
a) Nếu A = 0 thì \(\orbr{\begin{cases}x+1\\x-\frac{1}{2}=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}\)
b) Nếu A < 0 thì x + 1 và x - 1/2 là 2 số trái dấu
Mà x + 1 > x - 1/2 => \(\hept{\begin{cases}x+1>0\\x-\frac{1}{2}< 0\end{cases}}\)=> \(\hept{\begin{cases}x>-1\\x< \frac{1}{2}\end{cases}}\)
c) Nếu A > 0 => \(\hept{\begin{cases}x+1>0\\x-\frac{1}{2}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x+1< 0\\x-\frac{1}{2}< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>-1\\x>\frac{1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< -1\\x< \frac{1}{2}\end{cases}}\)
=> Với x > 1/2 hoặc x < -1 thỏa mãn đề bài
\(5x\div21=0\)
\(5x=0\times21\)
\(5x=0\)
\(\Rightarrow x=0\)