Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:S = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 +...+2^199+ 2^200.
=( 2^1 + 2^2) + (2^3 + 2^4) + (2^5+2^6)+...+(2^197+2^198)+(2^199+2^200).
=2.(1+2)+2^3.(1+2)+2^5.(1+2)+...+2^197.(1+2)+2^199(1+2)
=2.3+2^3.3+2^5.3+...+2^197.3+2^199.3
=3.(2+2^3+2^5+...+2^197+2^199)
Vậy tổng S chia hết cho 3.
Xin lỗi bn,mik o làm kịp
Ta có : A = 5 + 52 + 53 + ..... + 58
=> A = (5 + 52) + (53 + 54) + ..... + (57 + 58)
=> A = (5 + 52) + 52(5 + 52) + ..... + 56(5 + 52)
=> A = 30 + 52.30 + .... + 56.30
=> A = 30(1 + 52 + .... + 56)
Vì (1 + 52 + .... + 56) là số nguyên
Vậy A = 30(1 + 52 + .... + 56) chia hết cho 30
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
bai 1 (5+52) +....(57+58)
=5.(5+52) +54.(5+52) + 57(5+52)
=5.30 +54 .30 +57 .30
=30.(5.54.57) chia hết cho 30
bài 2
(3+33+35) +...(327+328+329)
=3.(3+33+35) +.....+328.(3+33 +35)
=3.273+...+328.273
=273.(3+ ......+328) chia hết cho 273
\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3-\frac{5}{n-1}\)
=>n-1 \(\in\) Ư(5) = {-5;-1;1;5}
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Vậy n = {-4;0;2;6}
S = 5+52+53+...+52006
5S = 52+53+54+...+52007
5S - S = (52+53+54+...+52007) - (5+52+53+...+52006)
4S = 52007 - 5
S = \(\frac{5^{2007}-5}{4}\)
Sửa đầu bài :
\(A=5+5^3+5^5+...+5^{27}\)
\(5A=5^2+5^4+5^6+...+5^{28}\)
\(\Rightarrow6A=5+5^2+5^3+5^4+...+5^{28}\)
\(30A=5^2+5^3+5^4+...+5^{29}\)
\(24A=\left(5^2+5^3+5^4+...+5^{29}\right)-\left(5+5^2+5^3+5^4+...+5^{28}\right)\)
\(24A=5^2+5^3+5^4+...+5^{29}-5-5^2-5^3-...-5^{28}\)
\(24A=5^{29}-5\)
\(A=\frac{5^{29}-5}{24}\)
Sai thì thông cảm nha
làm ơn giúp mình càng sớm càng tốt . mình sẽ k cho 3 bạn trả lời nhanh nhất