Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Điểm thứ nhất nối được 49 điểm còn lại
Điểm thứ 2 nối được 48 điểm còn lại
...Điểm thứ 49 nối được 1 điểm còn lại
Vậy số đường thẳng là: 1 + 2 + 3+...+ 49 = 49*50:2 = 1225
b) 45 điểm còn lại nối được: 1 + 2 + 3 +...+ 44 = 44 *45:2 = 990 đường thẳng
Mỗi điểm trong 45 điểm nối với 5 điểm kia được 5 đường thẳng, vậy số đường thẳng là: 45 * 5 = 225
5 điểm kia thành 1 đường thẳng. Vậy tổng số đường thẳng là: 990 + 225 + 1 = 1216
Cách 2:
Lẽ ra 5 điểm không có 3 điểm nào thẳng hàng, có thể nối được: 1 + 2 + 3 + 4 = 10 đường thẳng
Nhưng do 5 điểm thẳng hàng nên số đường thẳng giảm đi: 10 - 1 = 9
Vậy tổng số đường thẳng là: 1225 - 9 = 1216
GIẢI
a.Nếu trong 50 điểm không có 3 điểm nào thì ta lấy một trong 50 điểm bất kì nối với các điểm còn lại, ta có: 49 đường thẳng. Làm như vậy với 49 điểm còn lại, ta có: (49.49)+49 = 2450 đường thẳng. Nhưng dễ thấy các đường thẳng đã bị lặp lại, vậy ta có: 2450:2=1225 đường thẳng.
b. Nếu trong 50 điểm trên có 5 điểm thẳng hàng, thì ta có:
Lấy 1 điểm bất kì trong năm đường thẳng đó nối với các điểm còn lại, ta có: 4 đường thẳng. Làm như vậy với 4 điểm còn lại, ta có: (4.4)+ 4 = 20 đường thẳng. Nhưng dễ tháy các đường thẳng đã bị lạp lại nên ta có: 20:2=10 đường thẳng. Mà có 5 điểm thẳng hàng nên:
=> Ta có :10-1=9 đường thẳng.
Vậy số đường thẳng có là: 1225-9=1216 đường thẳng.
____________________________________HẾT_________________________________________

Lấy 1 điểm nối với 49 điểm còn lại ta có 49 đoạn thẳng. Nếu lấy 50 điểm nối với 49 điểm còn lại, ta có:
49.50 = 2450 (đoạn thẳng)
Nếu tính như vậy thì số đoạn thẳng sẽ được tính 2 lần nên số đoạn thẳng thực tế là:
2450 : 2 = 1225 (đoạn thẳng)
nếu đúng thì cho mình xin 1 tick nhé

a: Số điểm còn lại là 20-6=14(điểm)
TH1: Chọn 1 điểm trong 6 điểm thẳng hàng; chọn 1 điểm trong 14 điểm không thẳng hàng
Số đường thẳng vẽ được là \(6\cdot14=84\) (đường)
TH2: Chọn 2 điểm bất kì trong 14 điểm không thẳng hàng
Số đường thẳng vẽ được là: \(\frac{14\left(14-1\right)}{2}=14\cdot\frac{13}{2}=7\cdot13=91\) (đường)
TH3: Chọn 2 điểm bất kì trong 6 điểm thẳng hàng
=>Số đường thẳng vẽ được là 1 đường thẳng
Tổng số đường thẳng vẽ được là:
84+91+1=176(đường)
b: Số điểm còn lại là n-7(điểm)
TH1: Chọn 1 điểm trong 7 điểm thẳng hàng; chọn 1 điểm trong n-7 điểm không thẳng hàng
Số đường thẳng vẽ được là 7(n-7)(đường)
TH2: Chọn 2 điểm trong n-7 điểm không thẳng hàng
Số đường thẳng vẽ được là: \(\frac{\left(n-7\right)\left(n-7-1\right)}{2}=\frac{\left(n-7\right)\left(n-8\right)}{2}\) (đường)
TH3: Chọn 2 điểm trong 7 điểm thẳng
=>Số đường thẳng vẽ được là 1 đường
Tổng số đường thẳng vẽ được là 211 đường nên ta có:
\(7\left(n-7\right)+\frac{\left(n-7\right)\left(n-8\right)}{2}+1=211\)
=>\(\frac{14\left(n-7\right)+\left(n-7\right)\left(n-8\right)}{2}=210\)
=>14(n-7)+(n-7)(n-8)=420
=>(n-7)(n+6)=420
=>\(n^2-n-42-420=0\)
=>\(n^2-n-462=0\)
=>(n-22)(n+21)=0
=>\(\left[\begin{array}{l}n-22=0\\ n+21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}n=22\left(nhận\right)\\ n=-21\left(loại\right)\end{array}\right.\)
vậy: n=22
a, Khi có 20 điểm phân biệt, trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là 20.(20−1)2=10.19=190(đường thẳng).
Tuy nhiên trong 20 điểm phân biệt đó có đúng 6 điểm thẳng hàng đã được tính là không có ba điểm nào thẳng hàng.
+ Nếu trong 6 điểm không có ba điểm nào thẳng hàng thì số đường thẳng kẻ được đi qua 2 điểm trong 6 điểm đó là 6.52=15(đường thẳng).
+ Nếu 6 điểm thẳng hàng thì chỉ có duy nhất 1 đường thẳng đi qua 6 điểm đó.
Do đó số đường thằng đi qua 6 điểm thằng hàng đã được tính thành 15 đường, tuy nhiên thực tế chỉ có 1 đường.
Vì vậy, với 20 điểm phân biệt trong đó có đúng 6 điểm thẳng hàng, ngoài ra không có 3 điểm nào khác thẳng hàng thì số đường thẳng kẻ được là:
190 – 15 + 1 = 176(đường thẳng).
Vậy vẽ được 176 đường thẳng từ 20 điểm đó.
b
Khi có n điểm phân biệt, trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là n(n−1)2 (đường thẳng).
Tuy nhiên trong n điểm phân biệt đó có đúng 7 điểm thẳng hàng đã được tính là không có ba điểm nào thẳng hàng.
+ Nếu trong 7 điểm không có ba điểm nào thẳng hàng thì số đường thẳng kẻ được đi qua 2 điểm trong 7 điểm đó là 7.62=21(đường thẳng).
+ Nếu 7 điểm thẳng hàng thì chỉ có duy nhất 1 đường thẳng đi qua 7 điểm đó.
Do đó số đường thằng đi qua 7 điểm thằng hàng đã được tính thành 21 đường, tuy nhiên thực tế chỉ có 1 đường.
Vì vậy, với n điểm phân biệt trong đó có đúng 7 điểm thẳng hàng, ngoài ra không có 3 điểm nào khác thẳng hàng thì số đường thẳng kẻ được là:
n(n−1)2−21+1=n(n−1)2−20 (đường thẳng).
Mà có tất cả 211 đường thẳng
Do đó n(n−1)2−20=211
Hay n(n−1)2=231
Nên n(n – 1) = 462 = 22 . 21
Suy ra n = 22
Vậy có 22 điểm phân biệt.
Số điểm còn lại là 50-3=47(điểm)
TH1: Chọn 1 điểm trong 3 điểm thẳng hàng, 1 điểm trong 47 điểm còn lại
=>Số đường thẳng vẽ được là: \(3\cdot47=141\left(đường\right)\)
TH2: Chọn 2 điểm trong 47 điểm còn lại
Số đường thẳng vẽ được là: \(\dfrac{47\left(47-1\right)}{2}=47\cdot23=1081\left(đường\right)\)
Tổng số đường thẳng vẽ được là:
141+1081+1=1223(đường)
Nếu trong 50 điểm không có 3 điểm nào thì ta lấy một trong 50 điểm bất kì nối với các điểm còn lại, ta có: 49 đường thẳng. Làm như vậy với 49 điểm còn lại, ta có: \(\left(49+49\right)\times49=2450\) đường thẳng. Nhưng dễ thấy các đường thẳng đã bị lặp lại, vậy ta có: \(\frac{2450}{2}=1225\) đường thẳng.