Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 chắc như này quá!
1/Gọi số xe trọng tại 4 tấn và 11 tấn lần lượt là x;y. (\(x;y\inℕ^∗\))
Theo đề bài,ta có: \(4x+11y=58\)
Do 58 và 4x đều chia hết cho 2.Nên 11y chia hết cho 2.Suy ra y chia hết cho 2 (do 11 và 2 nguyên tố cùng nhau)
Đặt y = 2k \(\left(k\inℕ^∗\right)\)suy ra
\(4x+22k=58\Leftrightarrow2x+11k=29\Leftrightarrow x=\frac{29-11k}{2}\)
Do x > 0 nên \(11k< 29\Leftrightarrow1\le k\le2\).Do k thuộc N* nên k = 1 hoặc k = 2
Dễ thấy k = 1 là 1 nghiệm. Khi đó \(x=\frac{29-11}{2}=9\) và y = 2
Với k = 2 thì \(x=\frac{29-11.2}{2}=\frac{7}{2}\) (loại,vì x không thuộc N*)
Vậy cần 9 xe 4 tấn và 2 xe 11 tấn.
t làm thử bài 3,bạn bạn tự check,sai thì thôi nhé! t cx ko rành nguyên lí Dirichlet cho lắm : (
Lời giải
Coi 5 số là 5 "thỏ";2 nhóm là 2 "lồng".Theo nguyên lí Dirichlet thì tồn tại 1 nhóm có 3 số trở lên.Thật vậy.Nếu không tồn tại nhóm nào quá 2 số thì hai nhóm sẽ chứa không quá 2 .2 = 4 số (trái với giả thiết).Tức là nhóm còn lại có chứa 2 số trở lại.
Ta giả sử rằng không có nhóm nào chứa \(\le1\) số.
Xét nhóm có 3 số: Theo nguyên lí Dirichlet,tồn tại \(\left[\frac{5}{3}\right]+1=1+1=2\) số mà hiệu của số lớn và số bé bằng hiệu giữa số lớn và số bé trong nhóm kia.Hiệu của chúng là những số trong khoảng: 1 - 4.Mà hai số này luôn thuộc 1 trong hai nhóm. Tức là tồn tại hiệu của 2 số trong một nhóm bằng một số trong nhóm đó.
Tương tự,giả sử có 1 nhóm chứa \(\le1\) số.Với nếu 1 nhóm có 0 số thì bài toán đúng. (hiển nhiên,do trong 5 số tự nhiên liên tiếp trên luôn tồn tại hai số mà hiệu chúng bằng một số trong năm số đó)
Nếu có 1 nhóm có 1 số thì nhóm kia cũng luôn tồn tại hai số có hiệu bằng một số trong nhóm đó(2) (chỗ này mình cx không chắc lắm,vì khó c/m lắm)
Từ (1) và (2) ta có đpcm.
\(|a|=b^2\left(b-c\right)\) Ta có : \(|a|\ge0\)
\(\Rightarrow b^2\left(b-c\right)\ge0\)
+) Nếu \(b=0\Rightarrow b^2.\left(b-c\right)=0\)mà \(|a|=b^2\left(b-c\right)\)
\(\Rightarrow|a|=0\)
\(\Rightarrow a=0\)( vô lý vì chỉ có một số = 0 )
\(\Rightarrow b=0\)( loại ) (1)
+) Nếu \(a=0\Rightarrow|a|=0\Rightarrow b^2\left(b-c\right)=0\)
\(\Rightarrow\orbr{\begin{cases}b=0\left(loai\right)\\b-c=0\end{cases}}\)
Nếu b âm, c dương => b-c <0 ( mâu thuẫn )
Nếu b dương, c âm => b-c >0 ( mâu thuẫn )
\(\Rightarrow a=0\)( loại ) (2)
Từ (1) và (2) \(\Rightarrow c=0\)
+) Nếu a dương mà c=0
\(\Rightarrow\)b là âm
\(\Rightarrow b-c< 0\)
\(\Rightarrow b^2\left(b-c\right)< 0\)
mà \(b^2\left(b-c\right)\ge0\) ( mâu thuẫn )
\(\Rightarrow\)a là dương ( loại )
\(\Rightarrow\)a chỉ có thể là âm, b dương và c=0
Vậy a là âm, b là dương và c=0
Nếu ta thêm vào mỗi chữ số của A 1 đơn vị thì số A sẽ tăng thêm 1111 đơn vị hay A + 1111 = B (1).
Đặt A = a2 và B = b2 với a,b thuộc N*.
Từ (1) => a2 + 1111 = b2 => b2 - a2 = 1111 => (a + b)(b - a) = 1111. (2)
Vì a, b thuộc N* nên a + b > b - a. (3) Ta có : 1111 = 11.101 (4)
Từ (2), (3) và (4) => a + b = 101 và b - a = 11. => a = 45 và b = 56.
=> A = 2025 và B = 3136.
a, góc ở đỉnh bảng 80o
b, góc ở đáy bằng 55o
c,số đo góc B và góc C=(180-góc A) /2
1
a) Vì trong một tam giác cân , hai góc ở đấy bằng nhau nên tổng 2 góc ở đáy của tam giác cân đó có số đo độ là :
50 + 50 = 1000
=> Góc ở đỉnh của tam giác cân có số đo độ là :
1800 - 1000 = 800
b) Vì trong một tam giác cân , hai góc ở đấy bằng nhau nên nếu 1 góc ở đáy của tam giác đó bằng 700 => góc còn lại ở đáy phải bằng 700
c) Số đo góc B và góc C bằng :
( 180 - A)/2
I donnt no