Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b,x,y,z là các số tự nhiên khác 0.
=>a,b,x,y,z >=1
=>S=a+b+x+y+z >=1+1+1+1+1=5
=>S >=5>2
=>S>2
Ta có: a^2+b^2=x^2+y^2+z^2
=>a^2+b^2+a^2+b^2=a^2+b^2+x^2+y^2+z^2
=> 2.(a^2+b^2)=a^2+b^2+x^2+y^2+z^2
Lại có:
S= a+b+x+y+z
=> S^2=(a+b+x+y+z).(a+b+x+y+z)
=> S^2=a.(a+b+x+y+z)+b.(a+b+x+y+z)+x.(a+b+x+y+z)+y.(a+b+x+y+z)+
z.(a+b+x+y+z)
=> S^2=a^2+a.b+a.x+a.y+a.z+b.a+b^2+b.x+b.y+b.z+x.a+x.b+x^2+x.y+x.z+y.a+
y.b+y.x+y^2+y.z+z.a+z.b+z.x+z.y+z^2
=> S^2=(a^2+b^2+x^2+y^2+z^2)+(a.b+b.a)+(a.x+x.a)+(a.y+y.a)+(a.z+z.a)+
(b.x+x.b)+(b.y+y.b)+(b.z+z.b)+ (x.y+y.x)+(x.z+z.x)+(y.z+z.y)
=> S^2=2.(a^2+b^2)+2.a.b+2.a.x+2.a.y+2.a.z+2.b.x+2.b.y+2.b.z+2.x.y+2.x.z+2.y.z
=> S^2=2.(a^2+b^2+a.b+a.x+a.y+a.z+b.x+b.y+b.z+x.y+x.z+y.z)
=> S^2 chia hết cho 2.
Giả sử S là số nguyên tố mà S>2.
=>S không chia hết cho 2.
=>S^2 không chia hết cho 2.
=>Vô lí.
=>S không phải là số nguyên tố.
Vậy S không phải là số nguyên tố.
a, b, x, y, z = 1
1\(^2\)+ 1\(^2\)= 1\(^2\)+ 1\(^2\)+ 1\(^2\)
Vì 1 + 1 + 1 + 1 + 1 = 5 là số nguyên tố nên a + b + x + y + z là số nguyên tố.
Vậy, a + b + x + y + z là số nguyên tố
Số ước của A chỉ chứa thừa số nguyên tố là x thừa số, chỉ chứa thừa số nguyên tố b là y thừa số, chỉ chứa thừa số nguyên tố c là z thừa số, chỉ chứa thừa số nguyên tố ab là xy thừa số, chỉ chứa thừa số nguyên tố ac là xz thừa số, chỉ chứa thừa số nguyên tố bc là yz thừa số, chỉ chứa thừa số nguyên tố abc là xyz thừa số. Vì A là ước của chính nó, do đó số ước của A bằng:
x+y+z+xy+yz+zx+xyz+1 = x(z+1)+y(z+1)+xy(z+1)+z+1 = (z+1)(x+y+xy+1)
= (z+1)[(x+1)+y(x+1)] = (z+1)(y+1)(x+1)
1) số các ước tự nhiên có 2 chữ số của 45 là 2
2)viết só 43 dưới dạng tỏng của 2 số nguyên tố a,b với a<b là a=1;=43
3)cho a là chữ số khác 0 khi đó aaaaaa :(3.a) là 37037
4)số số nguyên tố có dạng13a là 3
5)cho x,y là số nguyên tố thỏa mãn x^2 +45=y^2. tổng x+y là 9
đáp án là phần in đậm nghiêng ý nhé
Ta có:
B = 2x . 3y
B2 = 22x . 32y
=> số ước của B2 là (2x + 1).(2y + 1) = 15
+ Nếu x > y thì 2x + 1 = 5; 2y + 1 = 3
=> x = 2; y = 1
=> số ước của B3 là (3.2 + 1).(3.1 + 1) = 40 (ước)
+ Nếu x < y thì 2x + 1 = 3; 2y + 1 = 5
=> x = 1; y = 2
=> số ước của B3 là (3.1 + 1).(3.2 + 1) = 40 (ước)
Vậy B3 có 40 ước
Chú ý: ta loại trường hợp: 2x + 1 = 15; 2y + 1 = 1 hoặc ngược lại vì khi đó 1 trong 2 số x hoặc y = 0, không đúng với đề bài là x; y là các số tự nhiên khác 0
Ta có:
B = 2x . 3y
B2 = 22x . 32y
=> số ước của B2 là (2x + 1).(2y + 1) = 15
+ Nếu x > y thì 2x + 1 = 5; 2y + 1 = 3
=> x = 2; y = 1
=> số ước của B3 là (3.2 + 1).(3.1 + 1) = 40 (ước)
+ Nếu x < y thì 2x + 1 = 3; 2y + 1 = 5
=> x = 1; y = 2
=> số ước của B3 là (3.1 + 1).(3.2 + 1) = 40 (ước)
Vậy B3 có 40 ước
Chú ý: ta loại trường hợp: 2x + 1 = 15; 2y + 1 = 1 hoặc ngược lại vì khi đó 1 trong 2 số x hoặc y = 0, không đúng với đề bài là x; y là các số tự nhiên khác 0