Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Này bạn kia , bạn ăn nói đàng hoàng nhé TFBOYS tàu khựa gì chứ , bạn là fan EXO đúng không . Vậ mình nghĩ EXO cũng chẳng khác gì TFboys đâu toàn lũ xách bô thôi .EXO-L cái gì chứ EXO L~ thì có .
akai haruma akai haruma akai haruma akai haruma akai haruma akai haruma akai haruma
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0
=> Hoặc a=-b hoặc b=-c hoặc c=-a
Ko mất tổng quát, g/s a=-b
a) Ta có: vì a=-b thay vào ta được:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
=> đpcm
b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)
=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)
Có: \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=-1\) (do \(a^2+b^2+c^2=1\) )
\(\Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab.bc+2bc.ca+2ca.ab=\dfrac{1}{4}\)
\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)
\(\Leftrightarrow \left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\) (do \(a+b+c=0\))
Lại có: \(M=a^4+b^4+c^4\)
\(=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2 +b^2c^2+c^2a^2\right)\)
\(=1-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\) (do \(a^2+b^2+c^2=1\))
\(=1-2.\dfrac{1}{4}\)(do \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\))
\(=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Vậy \(M=\dfrac{1}{2}\)
Hướng suy nghĩ của bạn đúng rồi.
Lời giải:
Phản chứng. Giả sử $y^2< xz$.
$0< y^2< xz$
$0< b^2< ac$
$\Rightarrow b^2y^2< xzac$
Theo đề bài ta có:
$2by=az+cx$
$\Rightarrow (az+cx)^2=4b^2y^2$
$\Leftrightarrow a^2z^2+c^2x^2+2acxz=4b^2y^2$
$a^2z^2+c^2x^2=4b^2y^2-2acxz< 4xzac-2acxz=2acxz$
$\Leftrightarrow (az-cx)^2< 0$ (vô lý)
Do đó điều giả sử là sai.
Tức là $y^2\geq xz$
35
bạn có thể giải chi tiết cho mình được không?