K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

Này bạn kia , bạn ăn nói đàng hoàng nhé TFBOYS tàu khựa gì chứ , bạn là fan EXO đúng không . Vậ mình nghĩ EXO cũng chẳng khác gì TFboys đâu toàn lũ xách bô thôi .EXO-L cái gì chứ EXO L~ thì có .

20 tháng 11 2016

Douma bọn TFBOYS tàu khựa

10 tháng 12 2019

akai haruma akai haruma akai haruma akai haruma akai haruma akai haruma akai haruma

24 tháng 12 2021

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)

20 tháng 8 2023

Có: \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)=-1\) (do \(a^2+b^2+c^2=1\) )

\(\Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab.bc+2bc.ca+2ca.ab=\dfrac{1}{4}\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)

\(\Leftrightarrow \left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\) (do \(a+b+c=0\))

Lại có: \(M=a^4+b^4+c^4\)

\(=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2 +b^2c^2+c^2a^2\right)\)

\(=1-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\) (do \(a^2+b^2+c^2=1\))

\(=1-2.\dfrac{1}{4}\)(do \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\))

\(=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Vậy \(M=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
9 tháng 6 2021

Hướng suy nghĩ của bạn đúng rồi.

Lời giải:

Phản chứng. Giả sử $y^2< xz$.

$0< y^2< xz$

$0< b^2< ac$

$\Rightarrow b^2y^2< xzac$

Theo đề bài ta có:

$2by=az+cx$

$\Rightarrow (az+cx)^2=4b^2y^2$

$\Leftrightarrow a^2z^2+c^2x^2+2acxz=4b^2y^2$

$a^2z^2+c^2x^2=4b^2y^2-2acxz< 4xzac-2acxz=2acxz$

$\Leftrightarrow (az-cx)^2< 0$ (vô lý)

Do đó điều giả sử là sai.

Tức là $y^2\geq xz$