K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2016

Áp dụng bất đẳng thức Bunyakovsky cho hai bộ số  \(\left(2^2+1^2\right)\)  và  \(\left(4x^2+y^2\right)\), ta được:

\(\left(2^2+1^2\right)\left(4x^2+y^2\right)\ge\left(2.2x+1.y\right)^2\)

nên  \(5\left(4x^2+y^2\right)\ge\left(4x+1\right)^2=1\)

Do đó,   \(4x^2+y^2\ge\frac{1}{5}\)  (điều phải chứng minh)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\frac{2}{2x}=\frac{1}{y}\)  \(\Leftrightarrow\)  \(x=y=\frac{1}{5}\)

18 tháng 6 2020

another way bằng Bunhiacopski

Bất đẳng thức Bunhiacopski:\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

Áp dụng, ta có:

\(\left(4x+y\right)^2=\left(2\cdot2x+1\cdot y\right)^2\le\left(2^2+1^2\right)\left(4x^2+y^2\right)=5\left(4x^2+y^2\right)\)

\(\Leftrightarrow4x^2+y^2\ge\frac{1}{5}\left(đpcm\right)\)

18 tháng 6 2020

Ta có: 4 x + y = 1 => y = 1- 4x 

Khi đó: \(4x^2+y^2=4x^2+\left(1-4x\right)^2=20x^2-8x+1\)

\(20\left(x^2-\frac{2}{5}x+\frac{1}{25}\right)-\frac{20}{25}+1\)

\(20\left(x-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)

Dấu "=" xảy ra <=>x = 1/5;  y = 1- 4x = 1/5 

23 tháng 10 2015

Ta có: \(4x^2\ge x\)\(y^2\ge y\)

\(\Rightarrow4x^2+y^2\ge4x+y=1\)

\(\Rightarrow4x^2+y^2\ge1\)

\(\Rightarrow4x^2+y^2>\frac{1}{5}\)

1 tháng 6 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+4\right)\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)

\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)

\(\Rightarrow5\left(4x^2+y^2\right)\ge1^2=1\Rightarrow4x^2+y^2\ge\frac{1}{5}\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{5}\)

2 tháng 6 2017

giải theo kiến thức lớp 8 bạn

27 tháng 4 2016

Dễ quá

27 tháng 4 2016

Bài này có 2 cách làm mình làm cách áp dụng BĐT Bunhiacopxki

Ta có  4x + y = 1 =) ( 4x + y)=1

=) (4x + y)2 = [ 2(2x)  + y ]2 <= ( 22 +1 ) [ (2x)+ y2 )

=) ( 4x + y )2 <=  5( 4x2 + y2 )

=) 1<= 5( 4x2 + y2 )

=) 1/5 <= 4x2 + y2

Hay 4x2 + y2 >= 1/5

K CHO MÌNH NHA

17 tháng 9 2016

Có x2 + y- 4x - 2y +5 = ( x2 - 4x + 4) + ( y2 - 2y + 1) = (x-2)2 + (y-1)2 
Vì (x-2)2 >= 0 với mọi x, (y-1)2 >=0 với mọi y 
=> (x-2) + (y-1) >=0 với mọi x,y hay x2 + y- 4x - 2y +5 >=0 (đpcm) 

17 tháng 9 2016

\(x^2+y^2-4x-2y+5=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)\)

\(=\left(x-2\right)^2+\left(y-1\right)^2\ge0\)

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

1 tháng 8 2018

3)

e)

b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

1 tháng 8 2018

3)

b)-x^2+4x-5=-(x^2-4x+5)

=-(x^2-2.2x+2^2)-1

=-(x+2)^2-1

vì -(x+2) nhỏ hơn hoặc bằng 0 \(\forall x\)

=>-(x+2)^2-1<1 \(\forall\)x