K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)

\(=3x^2+3y^2=3\)

b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)

c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)

d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)

=9-12+1

=-2

19 tháng 7 2016

\(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)

\(\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)

\(\Rightarrow\hept{\begin{cases}x^2=196\\y^2=64\end{cases}}\)

Với x=-14 thì y=-8\(\Rightarrow x+y=\left(-14\right)+\left(-8\right)=-22\)

Với x=14 thì y=8\(\Rightarrow x+y=14+8=22\)

DD
23 tháng 5 2022

1) \(4x=7y\Leftrightarrow\dfrac{x}{7}=\dfrac{y}{4}\Rightarrow\dfrac{x^2}{49}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{49+16}=\dfrac{260}{65}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4.49=196\\y^2=4.16=64\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=14,y=8\\x=-14,y=-8\end{matrix}\right.\) (vì \(\dfrac{x}{7}=\dfrac{y}{4}\) nên \(x,y\) cùng dấu) 

2) \(2^{x-1}+5.2^{x-2}=\dfrac{7}{32}\)

\(\Leftrightarrow2^{x-1}+\dfrac{5}{2}.2^{x-1}=\dfrac{7}{32}\)

\(\Leftrightarrow2^{x-1}=\dfrac{1}{16}=2^{-4}\)

\(\Leftrightarrow x-1=-4\)

\(\Leftrightarrow x=-3\)

3) \(\left|x+5\right|+\left(3y-4\right)^{2016}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\3y-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{4}{3}\end{matrix}\right.\)

 

2 tháng 8 2016

c) \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)

\(\Rightarrow\orbr{\begin{cases}x^2=4.49=14^2\\y^2=4.16=8^2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=14\\y=8\end{cases}}\)

d) \(\frac{x}{2}=\frac{y}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}\Rightarrow\frac{x^2.y^2}{4.16}=\frac{x^4}{16}=\frac{4}{64}=\frac{1}{16}\Rightarrow x=1;y=2\)

2 tháng 8 2016

a) Ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) và \(5x-y+3z=-16\)

\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{4}=-4\)

\(\Rightarrow\frac{5x}{15}=-4\Rightarrow5x=\left(-4\right).15=-60\Rightarrow x=60:5=12\)

\(\Rightarrow\frac{y}{5}=-4\Rightarrow y=\left(-4\right).5=-20\)

\(\Rightarrow\frac{3z}{-6}=-4\Rightarrow3z=\left(-4\right).\left(-6\right)=24\Rightarrow y=24:3=8\)

Vậy ___________________________________________________________

4 tháng 11 2020

Từ 4x = 7y => \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}\)

Đặt \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}=k\Rightarrow\hept{\begin{cases}x=\frac{1}{4}k\\y=\frac{1}{7}k\end{cases}}\)

Khi đó : x2 + y2 = 260

<=> ( 1/4k )2 + ( 1/7k )2 = 260

<=> 1/16k2 + 1/49k2 = 260

<=> k2( 1/16 + 1/49 ) = 260

<=> k2.65/784 = 260

<=> k2 = 3136

<=> k = ±56

Với k = 56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot56=14\\y=\frac{1}{7}\cdot56=8\end{cases}}\)

Với k = -56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot\left(-56\right)=-14\\y=\frac{1}{7}\cdot\left(-56\right)=-8\end{cases}}\)