K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 10 2023

Bạn xem lại phương trình ban đầu có đúng không vậy?

16 tháng 10 2023

Đè bài nó như thế ák

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
$4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0$

$(4x^2+y^2+z^2-4xy-4xz+2yz)+y^2+z^2-6y-10z+34=0$

$(2x-y-z)^2+(y^2-6y+9)+(z^2-10z+25)=0$
$(2x-y-z)^2+(y-3)^2+(z-5)^2=0$

Vì $(2x-y-z)^2\geq 0; (y-3)^2\geq 0; (z-5)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó bằng $0$

$\Rightarrow 2x-y-z=y-3=z-5=0$

$\Rightarrow y=3; z=5; x=4$

Khi đó:
$P=0^{2023}+(-1)^{2025}+(5-4)^{2027}=0$

6 tháng 3 2016

to moi hoc lop 5 thoi 

6 tháng 3 2016

Ta có:

\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z=-34\)

\(\Leftrightarrow\)  \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

\(\Leftrightarrow\)  \(4x^2-\left(4xy+4xz\right)+\left(y^2+2yz+z^2\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Leftrightarrow\)  \(4x^2-4x\left(y+z\right)+\left(y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

\(\Leftrightarrow\)  \(\left[2x-\left(y+z\right)\right]^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Mặt khác, ta lại có:  \(\left[2x-\left(y+z\right)\right]^2\ge0;\)  \(\left(y-3\right)^2\ge0\)  và  \(\left(z-5\right)^2\ge0\)  với mọi  \(x;\)  \(y;\)  \(z\)

nên  \(\left[2x-\left(y+z\right)\right]^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)

Do đó,  dấu  \(''=''\)  xảy ra  \(\Leftrightarrow\)   \(\left[2x-\left(y+z\right)\right]^2=0;\)  \(\left(y-3\right)^2=0\)  và  \(\left(z-5\right)^2=0\)

                                           \(\Leftrightarrow\)   \(2x-\left(y+z\right)=0;\)  \(y-3=0\)  và  \(z-5=0\)

                                           \(\Leftrightarrow\)   \(x=\frac{y+z}{2};\)  \(y=3\)  và  \(z=5\)

Khi đó,  \(x=\frac{3+5}{2}=\frac{8}{2}=4\)

Thay các giá trị trên của các biến  \(x;\)  \(y;\)  \(z\)  lần lượt vào  biểu thức  \(Q\), ta được:

\(Q=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}=2\)

12 tháng 12 2018

Ta có : \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

    \(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

   \(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Do \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{cases}\Rightarrow VT\ge0}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=y+z\\y=3\\z=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}}\)

Khi đó \(P=\left(4-4\right)^{2018}+\left(3-4\right)^{2018}+\left(5-4\right)^{2018}\)

               \(=0+\left(-1\right)^{2018}+1^{2018}\)

               \(=2\)