Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét A = 1/5 + 1/13 + ... + 1/(n²+(n+1)²)
phần tử tổng quát của chuổi trên có dạng:
uk = 1 /[k²+(k+1)²] với k chạy từ 1 --> n
có: k² + (k+1)² ≥ 2k(k+1) (dùng hằng đẳng thức là ra)
<=> 1/[k² + (k+1)² ≤ 1 /2k(k+1)
* Xét: B = 1/1.2 + 1/2.3 + ... + 1/n(n+1)
thấy: 1/k(k+1) = 1/k - 1/(k+1), thay k từ 1 --> n ta có:
1/1.2 = 1/1 - 1/2
1/2.3 = 1/2 - 1/3
1/3.4 = 1/3 - 1/4
....
1/n(n+1) = 1/n - 1/(n+1)
cộng theo vế, (chú ý đơn giản) ta có:
B = 1 - 1/(n+1) < 1
cho hằng số là a
=> 3x-4/ y+15=a mà khi y=3 thì x=2
=> 3.2-4/3+15 =2/18 =1/9 =a
=> 3x-4/y+15 =1/9
Nếu y=12
=> 3x-4/12+15 =1/9 => 3x-4=1/9.27 =3
=> 3x=3+4=7
=> x=7/3
VẬY X =7/3 KHI y =12
a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)
\(=3x^2+3y^2=3\)
b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)
c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)
d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)
=9-12+1
=-2
\(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=196\\y^2=64\end{cases}}\)
Với x=-14 thì y=-8\(\Rightarrow x+y=\left(-14\right)+\left(-8\right)=-22\)
Với x=14 thì y=8\(\Rightarrow x+y=14+8=22\)
1) \(4x=7y\Leftrightarrow\dfrac{x}{7}=\dfrac{y}{4}\Rightarrow\dfrac{x^2}{49}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{49+16}=\dfrac{260}{65}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4.49=196\\y^2=4.16=64\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=14,y=8\\x=-14,y=-8\end{matrix}\right.\) (vì \(\dfrac{x}{7}=\dfrac{y}{4}\) nên \(x,y\) cùng dấu)
2) \(2^{x-1}+5.2^{x-2}=\dfrac{7}{32}\)
\(\Leftrightarrow2^{x-1}+\dfrac{5}{2}.2^{x-1}=\dfrac{7}{32}\)
\(\Leftrightarrow2^{x-1}=\dfrac{1}{16}=2^{-4}\)
\(\Leftrightarrow x-1=-4\)
\(\Leftrightarrow x=-3\)
3) \(\left|x+5\right|+\left(3y-4\right)^{2016}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\3y-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{4}{3}\end{matrix}\right.\)
Từ 4x = 7y => \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}\)
Đặt \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}=k\Rightarrow\hept{\begin{cases}x=\frac{1}{4}k\\y=\frac{1}{7}k\end{cases}}\)
Khi đó : x2 + y2 = 260
<=> ( 1/4k )2 + ( 1/7k )2 = 260
<=> 1/16k2 + 1/49k2 = 260
<=> k2( 1/16 + 1/49 ) = 260
<=> k2.65/784 = 260
<=> k2 = 3136
<=> k = ±56
Với k = 56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot56=14\\y=\frac{1}{7}\cdot56=8\end{cases}}\)
Với k = -56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot\left(-56\right)=-14\\y=\frac{1}{7}\cdot\left(-56\right)=-8\end{cases}}\)