Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4x-3y=7\) => \(4x=3y+7\)
=> \(x=\dfrac{3y+7}{4}\)
=> \(x^2=\left(\dfrac{3y+7}{4}\right)^2\)
=> \(2x^2=\dfrac{\left(3y+7\right)^2}{8}\) (1)
Thay (1) vào B ta có:
B = \(\dfrac{\left(3y+7\right)^2}{8}+5y^2\) = \(\dfrac{9y^2+42y+49+40y^2}{8}\)
= \(\dfrac{49y^2+42y+9+40}{8}\)
= \(\dfrac{\left(7y+3\right)^2}{8}+5\)
Vì \(\dfrac{\left(7y+3\right)^2}{8}\) \(\ge\) 0 => \(\dfrac{\left(7y+3\right)^2}{8}+5\) \(\ge\) 5
=> Dấu bằng xảy ra <=> \(\dfrac{\left(7y+3\right)^2}{8}\) = 0
<=> \(7y+3=0\) <=> \(y=\dfrac{-3}{7}\) => \(x=\dfrac{10}{7}\)
=> GTNN của B = 5 khi \(x=\dfrac{10}{7};y=\dfrac{-3}{7}\)
a) Ta có:
\(A=2x^2-3x-7+4y^2-8y=2\left(x^2-2.x.\dfrac{3}{4}+\dfrac{9}{16}\right)+\left(2y\right)^2-2.2y.2+4-\dfrac{97}{8}\)\(\Leftrightarrow A=2\left(x-\dfrac{3}{4}\right)^2+\left(2y-2\right)^2-\dfrac{97}{8}\ge0+0-\dfrac{97}{8}=\dfrac{-97}{8}\)
Vậy \(A_{min}=\dfrac{-97}{8}\), đạt được khi và chỉ khi \(x=\dfrac{3}{4},y=1\)
D= 5x^2+8xy+5y^2-2x+2y
=4x^2+8xy+4y^2-2x+2y+y^2+x^2
=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2
(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2
suy ra D>=-1/2 nên D có GTNN là -1/2
Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y
5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1
5D = ( 5x + 4y - 1)2 + 9 (y + 1)2 - 2
D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1)2 - \(\frac{2}{5}\) \(\ge\)\(\frac{-2}{5}\)
Dấu "=" xảy ra khi y+1 = 0 \(\Leftrightarrow\)y = -1
5x + 4y - 1 = 0 \(\Leftrightarrow\)x=1
Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1
C = 2x2 + 5y2 + 4xy - 4x + 2y + 7
= (x2 + 4xy + 4y2) + (x2 - 4x + 4) + (y2 + 2y + 1) + 2
= (x + 2y)2 + (x - 2)2 + (y + 1)2 + 1 >= 1
GTNN của C là 1
\(4x-3y=7\Leftrightarrow x=\frac{3y+7}{4}\)
Thay vào ta được :
\(2\cdot\left(\frac{3y+7}{4}\right)^2+5y^2\)
\(=\frac{9y^2+42y+49}{8}+\frac{40y^2}{8}\)
\(=\frac{49y^2+42y+49}{8}\)
\(=\frac{\left(7y\right)^2+2\cdot7y\cdot3+3^2+40}{8}\)
\(=\frac{\left(7y+3\right)^2+40}{8}\ge\frac{40}{8}=5\forall y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{10}{7}\\y=-\frac{3}{7}\end{cases}}\)
thay y = \(\frac{4x-7}{3}\)vào A = 2x2 + 5y2 , ta được
9A = 98x2 - 280x + 245 = 2 . ( 7x - 10 )2 + 45 \(\ge\)45
\(\Rightarrow\)A \(\ge\)5
Vậy min A = 5 \(\Leftrightarrow x=\frac{10}{7};y=-\frac{3}{7}\)
\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=2\)
\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)
\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)
\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)
\(minC=-8\Leftrightarrow x=-1\)
\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)
\(maxD=-4\Leftrightarrow x=1\)
\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)
\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)
\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)
\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)
\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Mình giải cơ bản mà mọi người cùng hiểu
x = (7 + 3y)/4
Thế vào : 2( 7 + 3y)² / 16 + 5y²
= ( 7 + 3y)² / 8 + 5y²
= [( 7 + 3y)² + 40y² ] / 8
= ( 49 + 42y + 9y² + 40y² ) / 8
= ( 49 + 42y + 49y² ) / 8
= [ (7y)² + 2.7.3y + 9 + 40 ] / 8
= ( 7y + 3 )²/8 + 40/8
= (7y + 3)²/8 + 5
Ta có : (7y + 3)² ≥ 0 , với mọi y thuộc |R
<=> (7y + 3)²/8 ≥ 0 , với mọi y thuộc |R
<=> (7y + 3)²/8 + 5 ≥ 5 , với mọi y thuộc |R
Dấu "=" xảy ra khi (7y + 3)² = 0 <=> 7y + 3 = 0<=> y = -3/7 => x = 10/7
Vậy giá trị nhỏ nhất của 2x² + 5y² là Amin = 5 khi (x ; y) = ( 10/7 ; -3/7 )
x = (7 + 3y)/4
Thế vào : 2( 7 + 3y)² / 16 + 5y²
= ( 7 + 3y)² / 8 + 5y²
= [( 7 + 3y)² + 40y² ] / 8
= ( 49 + 42y + 9y² + 40y² ) / 8
= ( 49 + 42y + 49y² ) / 8
= [ (7y)² + 2.7.3y + 9 + 40 ] / 8
= ( 7y + 3 )²/8 + 40/8
= (7y + 3)²/8 + 5
Ta có : (7y + 3)² ≥ 0 , với mọi y thuộc |R
<=> (7y + 3)²/8 ≥ 0 , với mọi y thuộc |R
<=> (7y + 3)²/8 + 5 ≥ 5 , với mọi y thuộc |R
Dấu "=" xảy ra khi (7y + 3)² = 0 <=> 7y + 3 = 0<=> y = -3/7 => x = 10/7
Vậy giá trị nhỏ nhất của 2x² + 5y² là Amin = 5 khi (x ; y) = ( 10/7 ; -3/7 )