Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do m2+n2=1
\(=>m^2+n^2+1^2=2\)
Áp dụng bất đẳng thức Bunyacopsky cho 2 bộ số ta có:
\(=>\left(a^2+b^2+c^2\right)\left(m^2+n^2+1^2\right)\ge\left(am+bn+c.1\right)^2\)
\(=>\sqrt{\left(a^2+b^2+c^2\right)\left(m^2+n^2+1^2\right)}\ge\sqrt{\left(am+bn+c\right)^2}\)
Mà : \(m^2+n^2+1=2;a^2+b^2+c^2=1\)
\(=>\sqrt{2}\ge\)/am+bn+c/ (lấy trị tuyệt đối vì căn bình phương là 1 số dương);;
=> /am+bn+c/ \(\le\sqrt{2}\)
CHÚC EM HỌC TỐT..... anh đang bận lắm
Ta có :
\(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2-2ab\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
Vậy ...
a) \(3x^2-10x+7\)
\(=3\left(x^2-\frac{10}{3}x+\frac{7}{3}\right)\)
\(=3\left(x^2-\frac{10}{3}x+\frac{25}{9}-\frac{4}{9}\right)\)
\(=3\left[\left(x-\frac{5}{3}\right)^2-\frac{4}{9}\right]\)
\(=3\left[\left(x-\frac{5}{3}\right)^2\right]-\frac{4}{3}\ge\frac{-4}{3}>0\)
b) \(4x^2+9x+5\)
\(=4x^2+9x+\frac{81}{16}-\frac{1}{16}\)
\(=\left(2x+\frac{9}{4}\right)^2-\frac{1}{16}\ge\frac{-1}{16}>0\)