Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em sử dụng bất đẳng thức \((a+b)^2 \ge 4ab \) như sau nhé:
\(4a+2b+c+d=0\\ \Leftrightarrow -2b=4a+c+d\\ \Rightarrow 4b^2=(4a+c+d)^2 \ge 4.4a.(c+d)\\ \Rightarrow b^2\ge 4ac+4ad\)
Dấu bằng có khi chỉ khi \(4a=-b=c+d\)
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
đề sai á? tg ns lăng nhăng lên đây thử xem có ai giải k thôi
a\ ta có: \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
→\(S+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)
=\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
mà \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)(dạng khác của bđt co shi)
→\(S+3\ge\left(a+b+c\right)\frac{9}{2\left(a+b+c\right)}=\frac{9}{2}\)↔\(S\ge\frac{9}{2}-3=\frac{3}{2}\)
dấu = xảy ra khi a+b=b+c=c+a hay a=b=c=\(\frac{2015}{3}\)
vật GTNN của S=3/2 khi a=b=c=2015/3
b\ ta có: A=a3+b3+ab=(a+b)(a2-ab+b2)+ab mà a+b=1
→A=a2-ab+b2+ab=a2+b2
lại có: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)(bn tự cm công thức nhé hoặc thay a=1-b vào cũng đc)
do đo \(A\ge\frac{1}{2}\) dấu = xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\Rightarrow a=b=\frac{1}{2}}\)