Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 4 số ấy là a,b,c,d
tổng 2 số bất kì chia hết cho 2 nên a,b,c,d đồng dư với nhau mod 2
tổng 3 số bất kì chia hết cho 3 nên a,b,c,d đồng dư với nhau mod 3
=> a,b,c,d đồng dư với nhau mod 6
vì a,b,c,d nguyên dương nên giá trị nhỏ nhất mà a,b,c,d có thể nhận là 1
=> các số tiếp theo là 1+6=7,7+6=13,13+6=19
=> tổng của a,b,c,d là 1+7+13+19=40
Gọi 4 số cần tìm là a, b, c, d
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Hok tốt !
Cho mình hỏi là tại sao các số a,b,c,d khi chia cho 2 hoặc 3 đều phải cùng số dư. Và để có g trị nhỏ nhất thì sao phải dư một
Gọi 4 số cần tìm là a, b, c, d
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Gọi 4 số cần tìm là a, b, c, d (a, b, c, d thuộc n*)
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Nếu cảm thấy đúng thì k cho mình cái!
ket qua bang 48
Neu ma sai thi xin loi :)