K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

29 tháng 11 2017

Khi chia 3 số này cho 4 đc các số dư là : 1,2,3 

Suy ra gọi các số này là : 4k+1 , 4k+2, 4k+3

Tổng : 4k ( 1+2+3) = 4k . 6

Mà 4k chia hết cho 2 

6 chia hết cho 2 suy ra điều phải chứng minh ( DPCM là a+b+c chia hết cho 2)

10 tháng 10 2018

Hơi khó nha! @@@

â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1  là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:

\(x:5=m\)(dư a)

\(y:5=n\)(dư a)

\(x-y⋮5\)

Ta có:

\(5.5=5+5+5+5+5\)

\(5.4=5+5+5+5\)

=> Khoảng cách giữa mỗi tích là 5. 

Vậy tích 1 + 5 = tích 2

=> tích 1 (dư a) + 5 = tích 2 (dư a)

Mà:

 5 = tích 2 (dư a) -  tích 1 (dư a)

5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó =  0))

tích 2 -  tích 1 = 5

Không có thời gian làm câu b sorry bạn nhé!

Mình sẽ làm sau!

3 tháng 11

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$

`2A - A = - 1 + 2^42`$\\$

hay `A = -1 + 2^42`$\\$

3 tháng 11

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$

`2A - A = - 1 + 2^{42}`$\\$

hay `A = -1 + 2^{42}`$\\$