Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
Ta có : \(\left(x-y\right)^2\ge0\)
\(\Rightarrow x^2+y^2\ge2xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}\left(1\right)\)
Áp dụng BĐT (1) ta có :
\(\dfrac{a}{b+c}+\dfrac{c}{d+a}=\dfrac{a^2+ad+bc+c^2}{\left(b+c\right)\left(d+a\right)}\ge\dfrac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\left(2\right)\)
Tương tự : \(\dfrac{b}{c+d}+\dfrac{d}{a+b}\ge\dfrac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\left(3\right)\)
Cộng các về của các BĐT (2) và (3) ta được :
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\)
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{2\left(2a^2+2b^2+2c^2+2d^2+2ad+2bc+2ab+2cd\right)}{\left(a+b+c+d\right)^2}\)
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{2[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(a+d\right)^2]}{\left(a+b+c+d\right)^2}=2B\)
Ta dễ dàng chứng minh được : \(B\ge1\)
Thật vậy :
\(\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(a+d\right)^2}{\left(a+b+c+d\right)^2}\ge1\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(d+a\right)^2\ge\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)
\(\Rightarrowđpcm\)
Dấu đằng thức xảy ra : \(\Leftrightarrow a=c;b=d\)
Bài 1:ta có BĐt \(a^3+b^3\ge ab\left(a+b\right)\)vì nó tương đương với \(\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với a,b>0)
Áp dụng vào bài toán:
\(\dfrac{a^3+b^3}{2ab}+\dfrac{b^3+c^3}{2bc}+\dfrac{c^3+a^3}{2ac}\ge\dfrac{ab\left(a+b\right)}{2ab}+\dfrac{bc\left(b+c\right)}{2bc}+\dfrac{ca\left(c+a\right)}{2ac}=a+b+c\)dấu = xảy ra khi a=b=c
bài 2:
cần chứng minh \(\dfrac{a-b}{b+c}+\dfrac{b-c}{c+d}+\dfrac{c-d}{d+a}+\dfrac{d-a}{a+b}\ge0\)
hay \(\dfrac{a-b}{b+c}+1+\dfrac{b-c}{c+d}+1+\dfrac{c-d}{d+a}+1+\dfrac{d-a}{a+b}+1\ge4\)
\(\Leftrightarrow\dfrac{a+c}{b+c}+\dfrac{b+d}{c+d}+\dfrac{c+a}{d+a}+\dfrac{d+b}{a+b}\ge4\)
xét \(VT=\left(a+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+d}\right)+\left(b+d\right)\left(\dfrac{1}{c+d}+\dfrac{1}{a+b}\right)\)
Áp dụng BĐT cauchy dạng phân thức:
\(\dfrac{1}{b+c}+\dfrac{1}{a+d}\ge\dfrac{4}{a+b+c+d};\dfrac{1}{c+d}+\dfrac{1}{a+b}\ge\dfrac{4}{a+b+c+d}\)
do đó \(VT\ge\dfrac{4\left(a+c\right)}{a+b+c+d}+\dfrac{4\left(b+d\right)}{a+b+c+d}=4\)
dấu = xảy ra khi a=b=c=d
Lời giải:
Áp dụng BĐT AM-GM dạng ngược dấu (\(ab\leq (\frac{a+b}{2})^2\) )ta có:
\(\frac{b+c+d}{a}.1\leq \left(\frac{\frac{b+c+d}{a}+1}{2}\right)^2=\frac{(a+b+c+d)^2}{4a^2}\)
\(\Rightarrow \frac{a}{b+c+d}\geq \frac{4a^2}{(a+b+c+d)^2}\)\(\Rightarrow \sqrt{\frac{a}{b+c+d}}\geq \frac{2a}{a+b+c+d}\)
Hoàn toàn tương tự:
\(\left\{\begin{matrix} \sqrt{\frac{b}{c+d+a}}\geq \frac{2b}{a+b+c+d}\\ \sqrt{\frac{c}{d+a+b}}\geq \frac{2c}{a+b+c+d}\\ \sqrt{\frac{d}{a+b+c}}\geq \frac{2d}{a+b+c+d}\end{matrix}\right.\)
Cộng theo vế: \(\Rightarrow \text{VT}\geq \frac{2a+2b+2c+2d}{a+b+c+d}=2\)
Dấu bằng xảy ra khi \(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=1\)
\(\Leftrightarrow a+b+c+d=0\) (VL do $a,b,c,d$ dương)
Do đó dấu bằng không xảy ra .
Hay \(\text{VT}>2\) (đpcm)
có thiếu ĐK nào k bạn ?
áp dụng BĐT cauchy :
\(\dfrac{b}{\left(a+\sqrt{b}\right)^2}+\dfrac{d}{\left(c+\sqrt{d}\right)^2}\ge2\sqrt{\dfrac{bd}{\left(a+\sqrt{b}\right)^2\left(c+\sqrt{d}\right)^2}}=\dfrac{2\sqrt{bd}}{\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)}\)
việc còn lại cần chứng minh \(\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)\le2\left(ac+\sqrt{bd}\right)\)(đúng theo BĐT chebyshev)(không mất tính tổng quát giả sừ \(a\le\sqrt{b};c\le\sqrt{d}\))
dấu = xảy ra khi \(a=\sqrt{b};c=\sqrt{d}\)
Search mạng trước khi đăng nhs bn!
Cho a,b,c,d >0 .CMR: a/(b+c) + b/(c+d) + c/(d+a) + d/( a+b)? | Yahoo Hỏi & Đáp