K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}=\dfrac{\left(a+a+a\right)+\left(b+b+b\right)+\left(c+c+c\right)+\left(d+d+d\right)}{a+b+c+d}=\dfrac{3a+3b+3c+3d}{a+b+c+d}=\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

Vậy \(k=3\)

2 tháng 3 2017

theo bài ra ta có:

\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=k\)

\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1=k+1\) \(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=k+1\)

vì a + b + c + d khác 0 => a = b = c = d

ta có:

\(\Rightarrow\frac{4a}{a}=\frac{4b}{b}=\frac{4c}{c}=\frac{4d}{d}=k+1\)

=> 4 = 4 = 4 = 4 = k + 1

=> k + 1 = 4

=> k = 3

vật k = 3

14 tháng 4 2017

theo đầu bài

=>\(\dfrac{b+c+d}{a}\)=\(\dfrac{c+d+a}{b}\)=\(\dfrac{d+a+b}{c}\)=\(\dfrac{a+b+c}{d}\)=\(\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)=\(\dfrac{3\left[a+b+c+d\right]}{a+b+c+d}\)=>=3

=>k=3

12 tháng 7 2017

Theo tính chất dãy tỉ số bằng nhau ,ta có :

\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)

\(=\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

=> k = 3

sửa: \(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)

giải:

\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}\\ =\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\\ =\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3=k\)

vậy k=3

14 tháng 11 2021

\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\\ \Rightarrow\left\{{}\begin{matrix}b+c+d=3a\\a+c+d=3b\\a+b+d=3c\\a+b+c=3d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+d=2a\\a+b+c+d=2b\\a+b+c+d=2c\\a+b+c+d=2d\end{matrix}\right.\\ \Rightarrow2a=2b=2c=2d\\ \Rightarrow a=b=c=d\\ \Rightarrow A=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=1+1+1+1=4\)

30 tháng 11 2021

ab+c+d=ba+c+d=ca+b+d=da+b+c=a+b+c+d3(a+b+c+d)=13⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩b+c+d=3aa+c+d=3ba+b+d=3ca+b+c=3d⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a+b+c+d=2aa+b+c+d=2ba+b+c+d=2ca+b+c+d=2d⇒2a=2b=2c=2d⇒a=b=c=d⇒A=a+aa+a+a+aa+a+a+aa+a+a+aa+a=1+1+1+1=4

29 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=3(a+b+c+d)/a+b+c+d=3

suy ra k=3

29 tháng 11 2017

taco:\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}+\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)=>\(\dfrac{b+c+d}{a}+1=\dfrac{c+d+a}{b}+1=\dfrac{a+b+d}{c}+1=\dfrac{a+b+c}{d}+1=k+1\)=>\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}=k+1=\dfrac{a+b+c+d+a+b+c+d+a+b+c+d}{a+b+c+d}=\dfrac{4.\left(a+b+c+d\right)}{a+b+c+d}=4\)

=>k+1=4

=>k=3

11 tháng 6 2017

\(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\left(1\right)\\ \dfrac{b}{b+c+d}>\dfrac{b}{a+b+c+d}\left(2\right)\\ \dfrac{c}{c+d+a}>\dfrac{c}{a+b+c+d}\left(3\right)\\ \dfrac{d}{d+a+b}>\dfrac{d}{a+b+c+d}\left(4\right)\)

Từ (1) (2) (3) (4) => \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>\dfrac{a+b+c+d}{a+b+c+d}\\ \Rightarrow\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>1\left(4\right)\)

Mặt khác

\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}=\left(\dfrac{a}{a+b+c}+\dfrac{c}{c+d+a}\right)+\left(\dfrac{b}{b+c+d}+\dfrac{d}{d+a+b}\right)\)

\(\dfrac{a}{a+b+c}+\dfrac{c}{c+d+a}< \dfrac{a}{a+c}+\dfrac{c}{c+a}\) ; \(\dfrac{b}{b+c+d}+\dfrac{d}{d+a+b}< \dfrac{b}{b+d}+\dfrac{d}{b+d}\)

=>\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+\left(\dfrac{b}{b+d}+\dfrac{b}{b+d}\right)=2\)(5)

Từ (4) (5) => \(1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)

Vậy B không phải là số nguyên

11 tháng 6 2017

1 < B < 2 => KL

4 tháng 1 2022

Ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

⇔ \(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1\)

    \(=\dfrac{a+b+c+2d}{d}-1\)

⇔ \(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

Nếu a+b+c+d=0

⇒a+b=−(c+d);c+b=−(a+d);c+d=−(a+b);a+d=−(c+b)

Thay vào M, ta có:

\(M=\dfrac{a+b}{-\left(a+b\right)}=\dfrac{b+c}{-\left(b+c\right)}=\dfrac{c+d}{-\left(c+d\right)}=\dfrac{a+d}{-\left(a+d\right)}=-1\)

Nếu a+b+c+d ≠0

⇒ \(a=b=c=d\)

Thay vào M, ta có

\(M=\dfrac{a+b}{a+b}=\dfrac{b+c}{b+c}=\dfrac{c+d}{c+d}=\dfrac{d+a}{d+a}=1\)

4 tháng 1 2022

Cắt cu 77