K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

Ta có:

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

11 tháng 12 2018

Ta có : \(b^2=ac\) 

\(\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1) 

\(c^2=bd\) 

\(\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)

Từ (1) và (2) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) 

\(\Rightarrow\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) , \(\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) và \(\frac{c}{d}.\frac{c}{d}.\frac{c}{d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{a}{d}\) , \(\frac{b^3}{c^3}=\frac{a}{d}\) và \(\frac{c^3}{d^3}=\frac{a}{d}\) 

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\) 

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) 

Vậy \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

14 tháng 10 2018

i don't know

17 tháng 10 2018

=>b^3=abc

=>c^3=bcd

=>a^3+b^3+c^3/b^3+c^3+d^3=a^3+abc+bcd/d^3+abc+bcd

=>

15 tháng 10 2016

b2 = ac => \(\frac{a}{b}=\frac{b}{c}\)

c2 = bd => \(\frac{b}{c}=\frac{c}{d}\)

=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}\)

Theo tính chất dãy tỉ số bằng nhau

=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

=> Đpcm

8 tháng 9 2016

a . 

\(b^2\)= ac => \(\frac{a}{b}\)=\(\frac{b}{c}\)

c\(^2\)= bd => \(\frac{b}{c}=\frac{c}{d}\)

=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}\)=\(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)( theo \(\frac{t}{c}\)của dãy tỉ số = )

Mà \(\frac{a^3}{b^3}\)\(\frac{a}{b}\)x   \(\frac{a}{b}\).x   \(\frac{a}{b}\)  =   \(\frac{a}{b}\)    x\(\frac{b}{c}\)x\(\frac{c}{d}\)\(\frac{a}{d}\)

Nên \(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)=\(\frac{a}{d}\)

8 tháng 9 2016

 x-y=2<=>x=y+2 
thay vào Q được: 
Q=(y+2)^2+y^2-(y+2)y 
=y^2+2y+4 
=(y+1)^2+3 
=>A>=3 
dấu bằng xảy ra <=>y= -1 và x=1 
vậy min Q=3

2 tháng 8 2015

giúp mình với nha các bạn

20 tháng 2 2018

\(b^2\)\(ac\)=> \(\frac{a}{b}\)\(\frac{b}{c}\)(1)

\(c^2\)\(bd\)=> \(\frac{b}{c}\)\(\frac{c}{d}\)(2)

từ (1) và (2) => \(\frac{a}{b}\)\(\frac{b}{c}\)\(\frac{c}{d}\)=> \(\frac{a^3}{b^3}\)\(\frac{c^3}{d^3}\)\(\frac{b^3}{c^3}\)=> \(\frac{a^3}{b^3}\)\(\frac{a}{b}\)*   \(\frac{b}{c}\)*   \(\frac{c}{d}\)\(\frac{a}{d}\)         (*)

\(\frac{a^3}{b^3}\)=   \(\frac{b^3}{c^3}\)=  \(\frac{c^3}{d^3}\)=   \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)            (**)

Từ (*) và (**) => \(\frac{a}{d}\)\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)  (đpcm)

5 tháng 11 2021

\(\left\{{}\begin{matrix}b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\\c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}\left(1\right)\)

Và \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)