K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

Đáp án B

Các phát biểu đúng: 1; 4; 5; 6

2. Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt không thẳng hàng

3. Nếu 1 đường thẳng có 2 điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó

7. Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng đều đúng

2 tháng 1 2020

Chọn A

Ta chọn bất kì 3 điểm trong 18 điểm đã cho thì tạo thành một tam giác.

Do đó số tam giác được tạo thành là số cách chọn 3 điểm phân biệt bất kỳ (không kể thứ tự) từ 18 điểm đã cho.

Vậy có tất  C 18 3  tam giác.   

2 tháng 7 2019

Nhận xét: học sinh có thể nhầm cho rằng mỗi tam giác là một chỉnh hợp chập 3 của 18, nên số tam giác là A183 (phương án A); hoặc suy luận một tam giác có 3 đỉnh nên 18 điểm cho ta 18/3 = 6 tam giác (phương án C); hoặc suy luận 18 điểm có 18! Cách và mỗi tam giác có 3 đỉnh nên số tam giác là 18!/3 cách (phương án D)

- Do 

nên mỗi vecto là một chỉnh hợp chập hai của 18.

Vì vậy, số vecto là A182 (chọn đáp án là A)

9 tháng 9 2019

- Chọn 3 điểm trong 18 điểm đã cho làm 3 đỉnh của một tam giác. Mỗi tam giác là một tổ hợp chập 3 của 18. Vì vậy số tam giác là C183 (chọn phương án B)

26 tháng 5 2017

a) Sai

b) Sai

c) Đúng

d) Sai

31 tháng 3 2017

Hỏi đáp Toán

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy.

Cho hai mặt phẳng \(\left(\alpha\right)\&\left(\beta\right)\) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt \(\left(\alpha\right)\) ở A và cắt \(\left(\beta\right)\) ở B ta lấy hai điểm cố định \(S_1,S_2\) không thuộc \(\left(\alpha\right)\), \(\left(\beta\right)\). Gọi M là một điểm di động trên \(\left(\beta\right)\). Giả sử các đường thẳng \(MS_1,MS_2\) cắt \(\left(\alpha\right)\) lần lượt...
Đọc tiếp

Cho hai mặt phẳng \(\left(\alpha\right)\&\left(\beta\right)\) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt \(\left(\alpha\right)\) ở A và cắt \(\left(\beta\right)\) ở B ta lấy hai điểm cố định \(S_1,S_2\) không thuộc \(\left(\alpha\right)\)\(\left(\beta\right)\). Gọi M là một điểm di động trên \(\left(\beta\right)\). Giả sử các đường thẳng \(MS_1,MS_2\) cắt \(\left(\alpha\right)\) lần lượt tại \(M_1,M_2\)

a) Chứng minh rằng \(M_1M_2\) luon luôn đi qua một điểm cố định

b) Giả sử đường thẳng \(M_1M_2\) cắt giao tuyến m tại K. Chứng minh rằng ba điểm K, B, M thẳng hàng 

c) Gọi b là một đường thẳng thuộc mặt phẳng \(\left(\beta\right)\) nhưng không đi qua điểm B và cắt m tại I. Chứng minh rằng khi M di động trên b thì các điểm \(M_1\) và \(M_2\) di động trên hai đường thẳng cố định thuộc mặt phẳng \(\left(\alpha\right)\)

1
25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song