Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT \(\Leftrightarrow 3x^2+2x(2y-1)+(4y^2+6y+2021-T)=0\)
Coi đây là PT bậc 2 ẩn $x$.
Vì dấu "=" tồn tại nên PT trên luôn có nghiệm
\(\Rightarrow \Delta'=(2y-1)^2-3(4y^2+6y+2021-T)\geq 0\)
\(\Leftrightarrow -8y^2-22y-6062+3T\geq 0\)
\(\Leftrightarrow 3T\geq 8y^2+22y+6062\)
Mà: \(8y^2+22y+6062=8(y+\frac{11}{8})^2+\frac{48375}{8}\geq \frac{48375}{8}\)
\(\Rightarrow T\geq \frac{48375}{8}:3=\frac{16125}{8}\) (đây chính là GTNN của T)
\(\Leftrightarrow \)
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
a) \(B=-3x^2-4x+1\)
\(B=-\left(3x^2+4x-1\right)\)
\(B=-\left[\sqrt{3}x+2.\sqrt{3}x.+\dfrac{2\sqrt{3}}{3}+\left(\dfrac{2\sqrt{3}}{3}\right)^2-\left(\dfrac{2\sqrt{3}}{3}\right)^2-1\right]\)
\(B=-\left(\sqrt{3}x+\dfrac{2\sqrt{3}}{3}\right)^2+\dfrac{7}{3}\le\dfrac{7}{3}\)
\(Max_B=\dfrac{7}{3}\) khi \(x=\dfrac{-2}{3}\)
b) \(C\left(x\right)=x^4-10x^3+26x^2-10x+30\)
\(=\left(x^2\right)^2-2.x^2.5x+\left(5x\right)^2+x^2-2.x.5+5^2+5\)
\(=\left(x^2-5x\right)^2+\left(x-5\right)^2+5\)
\(C\left(y\right)=\left(y+1\right)\left(y+2\right)\left(y+3\right)\left(y+4\right)\)
Nhóm (y+1)(y+4)=t
Nhóm (y+2)(y+3)=t+2
Xong tìm Min được liền
c) Min=2010
d) Viết đề thiếu dấu, có vấn đề, xem lại
e) C= -[(x-y)2+2(x-y).7+72+x2-2.x.2+22-1945]
Xong tìm được Max
a)2x^2-4xy+4y^2+2x+5=x^2-4xy+4y^2+x^2+2x+1+4=(x-2y)^2+(x+1)^2+4>=4(dấu = tự tìm nhé)
b)x(1-x)(x-3)(4-x)=x(x-1)(x-3)(x-4)
=(x^2-4x)(x^2-4x+3)
Đặt x^2-4x=t(t>=-4) bt viết lại t(t+3)=t^2+3t>=-9/4
Dấu= xảy ra khi t=-3/2 >>>tìm x
\(A=\sqrt{2x^2-4x+3}+3\)
Ta có: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)
\(=2[\left(x-1\right)^2+\frac{1}{2}]\)
\(=2\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)
\(\Rightarrow MinA=4\Leftrightarrow x=1\)
nếu bài yêu cầu giải phương trình thì thế này ạ
\(3x^2-6x+4y^2-4xy+4y+3=0\)
\(x^2+4y^2+1-4xy+4y-6x+2x^2-4x+2=0\)
\(\left(2y-x+1\right)^2+2\left(x-1\right)^2=0\)
mà \(\left(2y-x+1\right)^2,\left(x-1\right)^2\ge0\)
\(\int^{x-1=0}_{2y-x+1=0}\Leftrightarrow\int^{x=1}_{y=0}\)