K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2024

  3\(x\) = 97 - 1

  3\(x\) = 96

   \(x\) = 96 : 3

    \(x\) = 32

   87 - 2\(x\) + 8 = 0

  95 - 2\(x\)  = 0

         2\(x\)  = 95

          \(x\) = \(\dfrac{95}{2}\) ≠ 32

Không tồn tại \(x\) thỏa mãn đề bài.

Bài 1 : So sánh cặp số :2225 và 3150  và Bài 2 : chứng minh rằng :817 – 279  – 913 chia hết cho 405.87 – 218 chia hết cho 14.Bài 3 : cho x > y > 0. chứng minh rằng :x3 > y3x4 > y4Bài 4 : chứng minh rằng :Cho ac = bd thì Cho  với b, d là số nguyên dương  thì .Bài 5 :  tìm x :(2x + 1)(x – 2)(5  – 3x) = 0|x – 1| + 2x  = 8(3x + 5)2 =  Bài 6 : tìm các số x,y , z thỏa :;   và 2x + 5y – 2z = 96 và 2x – 3y + z =...
Đọc tiếp

Bài 1 : So sánh cặp số :

  1. 2225 và 3150
  2.   và 

Bài 2 : chứng minh rằng :

  1. 817 – 279  – 913 chia hết cho 405.
  2. 87 – 218 chia hết cho 14.

Bài 3 : cho x > y > 0. chứng minh rằng :

  1. x3 > y3
  2. x4 > y4

Bài 4 : chứng minh rằng :

  1. Cho ac = bd thì 
  2. Cho  với b, d là số nguyên dương  thì .

Bài 5 :  tìm x :

  1. (2x + 1)(x – 2)(5  – 3x) = 0
  2. |x – 1| + 2x  = 8
  3. (3x + 5)
  4.  

Bài 6 : tìm các số x,y , z thỏa :

  1. ;   và 2x + 5y – 2z = 96
  2.  và 2x – 3y + z = 7

Bài 7 : tính :

  1. S = (-1) + 2 +(-3) + 4 …+(-99) + 100
  2. A = 1 – 3 + 5 – 7 + …+ 149 – 151
  3. B = 2 – 4 + 6 – 8 + … + 102 – 104.
  4. C = 

Bài 8 : tìm giá trị lớn nhất và nhỏ nhất (nếu có ) :

  1. A  = 2 + |x – 1|
  2. B = -|2x +3 | + 5
  3. C = |2x +1| + |3 – 2x|

Bài 9 : một lớp học nếu xếp hàng 5 thì thừa 3, nếu xếp hàng 7 thì thừa 1. Hỏi lớp học có bao nhiêu học sinh, biết số học sinh từ 40 đến 60 học sinh.

Bài 10 : cho hàm số : y = f(x) = 3x2 – 1.

  1. Tính f(-2), f(1/4).
  2. Tìm x để f(x) = 47.
  3. Chứng minh f(x) = f(-x) với mọi x
0
Bài 1. Phân tích số 8030028 thành tổng của 2004 số tự nhiên chẳn liên tiếp.Bài 2: Tính B = 1.2.3 + 2.3.4 + … + (n - 1)n(n + 1) Bài 3 : So sánh cặp số :2225 và 3150  và Bài 4 : Chứng minh rằng :817 – 279  – 913 chia hết cho 405.87 – 218 chia hết cho 14.Bài 5 : Cho x > y > 0. chứng minh rằng :x3 > y3x4 > y4Bài 6 : Chứng minh rằng :Cho ac = bd thì Cho  với b, d là số nguyên dương  thì .Bài 7 :  Tìm x...
Đọc tiếp

Bài 1. Phân tích số 8030028 thành tổng của 2004 số tự nhiên chẳn liên tiếp.

Bài 2: Tính B = 1.2.3 + 2.3.4 + … + (n - 1)n(n + 1) 

Bài 3 : So sánh cặp số :

  1. 2225 và 3150
  2.   và 

Bài 4 : Chứng minh rằng :

  1. 817 – 279  – 913 chia hết cho 405.
  2. 87 – 218 chia hết cho 14.

Bài 5 : Cho x > y > 0. chứng minh rằng :

  1. x3 > y3
  2. x4 > y4

Bài 6 : Chứng minh rằng :

  1. Cho ac = bd thì 
  2. Cho  với b, d là số nguyên dương  thì .

Bài 7 :  Tìm x :

  1. (2x + 1)(x – 2)(5  – 3x) = 0
  2. |x – 1| + 2x  = 8
  3. (3x + 5)\(\frac{16}{121}\)

Bài 8 : Tìm các số x,y , z thỏa :

  1. ;   và 2x + 5y – 2z = 96
  2.  và 2x – 3y + z = 7

Bài 9 : Tính :

  1. S = (-1) + 2 +(-3) + 4 …+(-99) + 100
  2. A = 1 – 3 + 5 – 7 + …+ 149 – 151
  3. B = 2 – 4 + 6 – 8 + … + 102 – 104.
  4. C = 

Bài 10 : Tìm giá trị lớn nhất và nhỏ nhất (nếu có ) :

  1. A  = 2 + |x – 1|
  2. B = -|2x +3 | + 5
  3. C = |2x +1| + |3 – 2x|

Bài 11 : Một lớp học nếu xếp hàng 5 thì thừa 3, nếu xếp hàng 7 thì thừa 1. Hỏi lớp học có bao nhiêu học sinh, biết số học sinh từ 40 đến 60 học sinh.

Bài 12 : Cho hàm số : y = f(x) = 3x2 – 1.

  1. Tính f(-2), f(1/4).
  2. Tìm x để f(x) = 47.
  3. Chứng minh f(x) = f(-x) với mọi x.
1
14 tháng 9 2016

dài thế

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

Bài 1:

a. $2x-10-[3x-14-(4-5x)-2x]=2$

$2x-10-3x+14+(4-5x)+2x=2$

$-x-10+14+4-5x+2x=2$

$-4x+8=2$

$-4x=-6$

$x=\frac{-6}{-4}=\frac{3}{2}$

b. Đề sai. Bạn xem lại. 

c.

$|x-3|=|2x+1|$

$\Rightarrow x-3=2x+1$ hoặc $x-3=-(2x+1)$

$\Rightarrow x=-4$ hoặc $x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

Bài 2:

a. Gọi 3 số nguyên liên tiếp là $a, a+1, a+2$

Ta có:

$a+a+1+a+2=3a+3=3(a+1)\vdots 3$ (đpcm)

b. Gọi 5 số nguyên liên tiếp là $a, a+1, a+2, a+3, a+4$

Ta có:

$a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5(a+2)\vdots 5$ (đpcm)

c.

Tổng quát: Tổng của $n$ số nguyên liên tiếp chia hết cho $n$. với $n$ lẻ.

Thật vậy, gọi $n$ số nguyên liên tiếp là $a, a+1, a+2, ...., a+n-1$

Tổng của $n$ số nguyên liên tiếp là:

$a+(a+1)+(a+2)+....+(a+n-1)$

$=na+(1+2+3+....+n-1)$
$=na+\frac{n(n-1)}{2}$

$=n[a+\frac{n-1}{2}]$

Vì $n$ lẻ nên $\frac{n-1}{2}$ nguyên

$\Rightarrow a+\frac{n-1}{2}$ nguyên

$\Rightarrow a+(a+1)+....+(a+n-1)=n[a+\frac{n-1}{2}]\vdots n$

 

25 tháng 2 2020

a. c(x)=x5−2x3+3x4−9x2+11x−6−(3x4+x5−2x3−8−10x2+9x)

c(x)=x2+2x+2

b. Để c(x)=2x+2 thì x2=0⇒x=0

c. Với c(x)=2012, ta có:

c(x)=x2+2x+2=(x+1)2+1=2012

⇔(x+1)2=2011⇒x+1∉ZxZ

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
2 tháng 8 2020

\(A=7.\left(x^2-5x+3\right)-x.\left(7x-35\right)-14\)

\(A=7x^2-35x+21-7x^2+35x-14\)

\(A=7\)

       \(B=\left(4x-5\right).\left(x+2\right)-\left(x+5\right).\left(x-3\right)-3x^2-x\)

\(B=4x^2+8x-5x-10-x^2+3x-5x+15-3x^2-x\)

\(B=5\)

     \(C=\left(6x-5\right).\left(x+8\right)-\left(3x-1\right).\left(2x+3\right)-9.\left(4x-3\right)\)

\(C=6x^2+48x-5x-40-6x^2-9x+2x+3-36x+27\)

\(C=-10\)

Học tốt