K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 8 2024

Lời giải:

$3x-4y=0\Rightarrow 3x=4y\Rightarrow \frac{x}{4}=\frac{y}{3}$

Đặt $\frac{x}{4}=\frac{y}{3}=a$

$\Rightarrow x=4a; y=3a$

$\Rightarrow x^2+y^2=(4a)^2+(3a)^2=25a^2\geq 0$ với mọi $a\in\mathbb{R}$

$\Rightarrow x^2+y^2$ nhận giá trị nhỏ nhất bằng $0$

Giá trị này đạt tại $a=0\Leftrightarrow x=y=0$

31 tháng 10 2017

Bạn chịu khó vào link này nhé : https://h.vn/hoi-dap/question/49863.html

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

25 tháng 4 2020

bài 1 : 

B=15-3x-3y

a) x+y-5=0 

=>x+y=-5

B=15-3x-3y <=> B=15-3(x+y)

Thay x+y=-5 vào biểu thức  B ta được :

B=15-3(-5)

B=15+15

B=30

Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30

b)Theo đề bài ; ta có :

B=15-3x-3.2=10

15-3x-6=10

15-3x=16

3x=-1

\(x=\frac{-1}{3}\)

Bài 2:

a)3x2-7=5

3x2=12

x2=4

x=\(\pm2\)

b)3x-2x2=0

=> 3x=2x2

=>\(\frac{3x}{x^2}=2\)

=>\(\frac{x}{x^2}=\frac{2}{3}\)

=>\(\frac{1}{x}=\frac{2}{3}\)

=>\(3=2x\)

=>\(\frac{3}{2}=x\)

c) 8x2 + 10x + 3 = 0

=>\(8x^2-2x+12x-3=0\)

\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)

vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)

Bài 5 đề  sai  vì  |1| không thể =2

13 tháng 3 2016

câu 2a) xét (x-1)2> hoặc = 0

(x-1)2+(y+1)2> hoặc bằng 0

(x-1)2+(y+1)2+3> hoặc =3

=> GTNN của biểu thức trên là 3

13 tháng 3 2016

GIÚP minh vs mai mình nộp rui!!!!!!!!!!!!!!!!!!!!@@@@@@@@@@

26 tháng 5 2020

1) 

Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y 

=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)

Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0  <=> x = -3 và y = -1

=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5  tại x = -3 và y = -1

=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1 

 2) \(M=2x^4+3x^2y^2+y^4+y^2\)

\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)

20 tháng 9 2019

1. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath

24 tháng 9 2015

Ta có -|1,5 - x| < 0

=> 19,5 - |1,5 - x| < 19,5

Vậy GTLN của Q là 19,5 <=> 1,5 - x = 0 <=> x = 1,5

13 tháng 2 2017

gtnn mà

30 tháng 4 2018

ta có x4+3x2 \(\ge\)0

=>\(x^4+3x^2+3\ge3\)

vậy giá trị nhỏ nhất của biểu thức =3

30 tháng 4 2018

\(P\left(x\right)=x^4+3x^2+3=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\)

nhận thấy \(x^2+\frac{3}{4}\ge\frac{3}{4}\) suy ra \(\left(x^2+\frac{3}{2}\right)^2\ge\frac{9}{4}\)

Suy ra \(P\left(x\right)\ge\frac{9}{4}+\frac{3}{4}=\frac{12}{4}=3\)

Vậy Min = 3 <=> x = 0