Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co : a+b+c=bc+ac+ab/abc
=a+b+c=bc+ac+ab (vi abc=1)
ta co : (a-1).(b-1).(c-1)
=(ab-a-b+1).(c-1)
=abc-ab-ac+a-bc+b+c-1
=(abc-1)+(a+b+c)-(ab+ac+bc)
=(1-1)+(bc+ac+ab)-(ab+ac+bc)
=0
do (a-1).(b-1).(c-1)=0 (cmt)
=>a=b=c=1
thay vao p
=>p=(1^19-1).(1^5-1).(1^1890-1)
=(1-1).(1-1).(1-1)
0
Tớ nhầm a,b,c với x,y,z nhe
thông cảm bệnh nghề nghiệp
p=0 là đúng đấy
nhớ cho tớ nhé
hí hí hí hí hí ................
x+y+z=1/x+1/y+1/z
<=>x+y+z=(xy+yz+xz)/xyz(bạn tự quy đồng nha)
<=.x+y+z=xy+yz+xz
ta có
xyz-(x+y+z)+(xy+yz+xz)-1=0
(xyz-xz-yz+z)-(xy-x-y+1)=0
z(xy-x-y+1)-(xy-x-y+1)=0
(xy-x-y+1)(z-1)=0
(x(y-1)-(y-1))(z-1)=0
(x-1)(y-1)(z-1)=0
- x-1=0=>x=1
- y-1=0=>y=1
- z-1=0=>z=1
cậu tự xét từng trường hợp nha
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=3\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}=3\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2xyz}{xyz}=3\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2=3\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Lời giải:
Ta có:
\(x^3+y^3+z^3=3xyz\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)
Vì \(x+y+z\neq 0\Rightarrow x^2+y^2+z^2-xy-yz-xz=0\)
\(\Leftrightarrow 2(x^2+y^2+z^2-xy-yz-xz)=0\)
\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)
Ta thấy \((x-y)^2; (y-z)^2;(z-x)^2\geq 0\)
\(\Rightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0\). Dấu bằng xảy ra khi
\((x-y)^2=(y-z)^2=(z-x)^2=0\Leftrightarrow x=y=z\)
Khi đó:
\(P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=(1+1)(1+1)(1+1)=8\)
xyz=1
=>x=1,y=1,z=1
Thay x=1,y=1,z=1 vào P ta được:
P=(119-1)(15-1)(11890-1)=0