K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

Chọn B.

 

Theo giả thiết ta có: 3sin4 α – cos4 α = ½. Nên 3sin4 α – (1- sin2 α)2 = ½.

Hay 6sin4α - 2(1 - 2sin2α + sin4α)  = 1

Suy ra: 4sin4α + 4sin2α - 3 = 0

Nên sin2α =  1/2

Ta lại có  cos2α =  1 - sin2α = 1 - 1/2 = ½

Suy ra 

13 tháng 4 2016

Từ M kẻ MP ⊥ Ox, MQ ⊥ Oy

=> = cosα;             = 

= sinα;

Trong tam giác vuông MPO:

MP2+ PO= OM2              =>  cos2 α + sin2 α = 1

Áp dụng BĐT:  \(a^2+b^2\ge2ab\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(f\left(x\right)=x^4+\left(1-x\right)^4\ge\frac{\left[x^2+\left(1-x\right)^2\right]^2}{2}\ge\frac{\left[\frac{\left(x+1-x\right)^2}{2}\right]^2}{2}=\frac{1}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1-x\Leftrightarrow x=\frac{1}{2}\)

Vậy tập giá trị của f(x) là: [1/8;+\(\infty\))

17 tháng 7 2019

Ta có: \(\frac{\tan^2\alpha-\sin^2\alpha}{\cot^2\alpha-\cos^2\alpha}=\frac{\frac{\sin^2\alpha}{\cos^2\alpha}-\sin^2\alpha}{\frac{\cos^2\alpha}{\sin^2\alpha}-\cos^2\alpha}=\frac{\sin^2\alpha\left(\frac{1-\cos^2\alpha}{\cos^2\alpha}\right)}{\cos^2\alpha\left(\frac{1-\sin^2\alpha}{\sin^2\alpha}\right)}=\frac{\sin^2\alpha\left(\frac{\sin^2\alpha}{\cos^2\alpha}\right)}{\cos^2\alpha\left(\frac{\cos^2\alpha}{\sin^2\alpha}\right)}=\frac{\frac{\sin^4\alpha}{\cos^2\alpha}}{\frac{\cos^4\alpha}{\sin^2\alpha}}=\frac{\sin^4\alpha}{\cos^2\alpha}.\frac{\sin^2\alpha}{\cos^4\alpha}=\frac{\sin^6\alpha}{\cos^6\alpha}=\tan^6\alpha\)

P/s: Áp dụng công thức lượng giác cơ bản và liên hệ toán học giữa các hàm là đc :) Em lp 5 vậy nên sai thì thông cảm ạ

NV
14 tháng 6 2020

\(6sin^4x-2cos^4x=1\Leftrightarrow6sin^4x-2\left(1-sin^2x\right)^2-1=0\)

\(\Leftrightarrow6sin^4x-2\left(sin^4x-2sin^2x+1\right)-1=0\)

\(\Leftrightarrow4sin^4x+4sin^2x-3=0\)

\(\Leftrightarrow\left(2sin^2x+3\right)\left(2sin^2x-1\right)=0\)

\(\Leftrightarrow2sin^2x=1\Rightarrow sin^2x=\frac{1}{2}\Rightarrow cos^2x=\frac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}sin^4x=\frac{1}{4}\\cos^4x=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow C=\frac{1}{4}+3.\frac{1}{4}=1\)

1 tháng 9 2019

Số phần tử của tập hợp A = { k2 + 1 | k εℤ, |k| \(\le\)2} là:

A. 1

B. 2 

C. 3

D. 5

1 tháng 9 2019

Bảo Chi Lâm bạn giải thích giùm đc ko?

NV
29 tháng 9 2020

d.

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)

\(tan^4x-3tan^2x-4tanx-3=0\)

\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)

\(\Leftrightarrow tan^2x-tanx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)

28 tháng 9 2020

mọi người giúp hộ mình nhanh với

24 tháng 9 2016

a) P = sin2α  + sin2α.\(\frac{cos\text{α}}{sin\text{α}}\) + cos2α - cos2α.\(\frac{sin\text{α}}{cos\text{α}}\)

=sin2α + sinα.cosα + cos2α - cosα.sinα

=sin2α + cos2α

=1

Vậy P không phụ thuộc vào α

b) Q= -cos4α(2cos2α -1 -2) +sin4α(1 -2sin2α+2)

= -cos4α(cos2α -2) +sin4α(cos2α +2)

=-cos4α.cos2α +2cos4α +sin4α.cos2α +2sin4α

=cos2α(sin4α -cos4α) +2(sin4α +cos4α)

=cos2α [\(\left(\frac{1-cos^22\text{α}}{2}\right)^2-\left(\frac{1+cos^22\text{α}}{2}\right)^2\)]+2.[\(\left(\frac{1-cos^22\text{α}}{2}\right)^2+ \left(\frac{1+cos^22\text{α}}{2}\right)^2\)]

= -cos2α.cos2α +1+cos2

= -cos22α +1+cos22α

=1

Vậy Q không phụ thuộc vào α