\(3^n+1\) là bội của 10 (n thuộc Z ) CMR \(3^{n+4}+1\) ch...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

3n+4=3n.34=3n.81. suy ra 3n+1 đồng dư 3n.81+1 nên nó chia hết 10

13 tháng 7 2016

3^(n+4)+1=3^n.3^4+81-80=3^n.81+81-80=81.(3^n+1)-80

ma:3^n+1 chia het cho 10 nen81.(3^n+1) chia het cho 10 va 80 chia het cho 10

tu do tan duoc81.(3^n+1)-80 chia het cho 10 hay3^n+4+1 chia het cho10

20 tháng 2 2017

a/ \(\frac{3n}{n-1}=\frac{3n-3+3}{n-1}=3+\frac{3}{n-1}\)

để 3n chia hết cho n-1 thì n-1 phải thuộc ước của 3

suy ra n-1 thuộc -3;-1;1;3

suy ra n thuộc -2;0;2;4

b/\(\frac{n+10}{n-1}=\frac{n-1+11}{n-1}=1+\frac{11}{n-1}\)

để n+10 là bội của n-1 thì 11 phải là bội của n-1

suy ra n-1 thuộc -11;-1;1;11

suy ra n thuộc -10;0;2;12

gặp dạng toán như vậy thì bạn cứ áp dụng cách này để làm nhé

c/ gọi ba số đó là n-1;n;n+1

ta thấy \(\left(n-1\right)+n+\left(n+1\right)=3n\)chia hết cho 3 với mọi n thuộc Z

vậy tổng 3 số liên tiếp luôn chia hết cho 3

nhớ k cho mình nhé  ^.^

20 tháng 2 2017

Ta có : 3n chia hết cho n - 1 

<=> 3n - 3 + 3 chia hết cho n - 1

<=> 3(n - 1) + 3 chia hết cho n - 1

<=> 3 chia hết cho n - 1

<=> n - 1 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng:

n - 1-3-113
n-2024
14 tháng 8 2019

Ta có: 10 - 3n = 3(1 - n) + 7

Do 3(1 - n)  \(⋮\)1 - n => 7 \(⋮\)1 - n

=> 1 - n \(\in\)Ư(7) = {1; -1; 7; -7}

Với : +)1 - n = 1 => n = 0

 +) 1 - n = -1 => n = 2

+)1 - n = 7=> n = -6

+) 1 -n = -7 => n = 8

Vậy ...

Bài 1 : 

CÁCH  1

Ta có : \(3^{n+4}+1=3^4.\left(3^n+1\right)-8\left(1\right)\)

Vì \(3^n+1\)và \(80\)đều là bội của 10 nên từ ( 1 ) ta suy ra \(3^{n+4}+1\)cũng là bội của 10

CÁCH 2:

\(3^n+1\)là bội của 10 nên \(3^n\)tận cùng bằng 9 ( 2 )

Ta có : \(3^{n+4}+1=3^n.3^4+1\)\(=3^n.81+1\left(3\right)\)

Từ \(\left(2\right),\left(3\right)\)suy ra \(3^{n+4}+1\)là một số tận cùng bằng 0

Vậy \(3^{n+4}+1\)cũng là bội của 10

Chúc bạn học tốt ( -_- )

13 tháng 6 2018

Cách 1: ta có: 3n +1 là bội của 10

=> 3n +1 chia hết cho 10

mà các số chia hết cho 10 tận cùng 0

=> 3n chia hết cho 9

mà 3n+4  +1 = 3n.34 +1

=> 3n.34 chia hết cho 9

=> 3n .34 +1 chia hết cho 10

=> 3n+4 +1 chia hết cho 10 

=> 3n+4 +1 là bội của 10 ( đpcm)

Cách 2: ta có: 3n+4 +1 = 3n.34 + 1 = 3n.81+ 81 - 80 = 81.( 3n +1) - 80

mà 3n+1 là bội của 10

=> 3n+1 chia hết cho 10

=> 81.(3n+1) chia hết cho 10

mà 80 chia hết cho 10

=> 81.(3n+1) - 80 chia hết cho 10

=> 3n+4+1 chia hết cho 10

=> 3n+4 +1 là bội của 10 (đpcm)

18 tháng 10 2017

a 2001^2017 -1 chia hết cho 10

ta có 2001^ 2017 -1^2017 chia hết cho 10 

ta thấy 2 số này có chung số mũ , ta lại có 

2001-1=2000 ( 2000 chia hết cho 10)

ta chứng minh được 2001^2017 -1 chia hết cho 10

còn những câu khác bạn tự làm nha

18 tháng 10 2017

34n sẽ có tận cùng bằng 1

(......1) - (.....6) = (......5) chia hết cho 5 (đpcm)

4 tháng 7 2017

1, Ta có: \(\dfrac{2727}{2323}=\dfrac{27.101}{23.101}=\dfrac{27}{23}=\dfrac{27.1010101}{23.1010101}=\dfrac{27272727}{23232323}\)

2, \(3^{n+2}+2^{n+3}+3^n+2^{n+1}\)

\(=3^n.3^2+3^n+2^n.2^3+2^n.2\)

\(=3^n\left(3^2+1\right)+2^n\left(2^3+2\right)\)

\(=3^n.10+2^n.10=\left(3^n+2^n\right).10⋮10\forall n\in N\)

Vậy...

4 tháng 7 2017

1)\(\dfrac{27272727}{23232323}=\dfrac{2727.10001}{2323.10001}=\dfrac{2727}{2323}\)

2)

\(3^{n+2}+2^{n+3}+3^n+2^{n+1}\)

\(=3^n.3^2+2^n.2^3+3^n.1+2^n.2\)

\(=3^n.9+2^n.8+3^n.1+2^n.2\)

\(=3^n\left(9+1\right)+2^n\left(8+2\right)\)

\(=3^n.10+2^n.10\)

\(=10\left(3^n+2^n\right)⋮10\left(đpcm\right)\)

21 tháng 4 2020

a/  n-2 thuộc B(4) ={0;4;8;12;16;...}

Vậy n thuộc {2;6;10;14;18;...}

b/ n-1 thuộc Ư(6) = {1;2;3;6}

Vậy n thuộc {2;3;4;7}

c/ n=3 hoặc n=4

CHÚC BẠN HỌC TỐT :)

21 tháng 4 2020

c/ n thuộc {0;3;4}

mình nhầm :v bạn sửa câu c nha

20 tháng 6 2017

Câu 1: ta có:

\(4C=4^2+4^3+...+4^n+4^{n+1}\)lấy 4C-C ta có:\(3C=4^{n+1}-4\)

=> C=\(\frac{4^{n+1}-4}{3}\) 

b, tương tự ta có: \(5D=5+5^2+...+5^{2000}+5^{2001}\)

=> D=\(\frac{5^{2001}-1}{4}\)

Câu 2: ta có: \(2A=2+2^2+2^3+...+2^{200}+2^{201}\)

=> Lấy 2A - A, ta có: \(A=2^{201}-1\)=> A+1=2201 -1+1=2201 .

Vậy \(A+1=2^{201}\)

Câu 3: Ta có: \(3B=3^2+3^3+3^4+...+3^{2005}+3^{2006}\)

=> \(B=\frac{3^{2006}-3}{2}\)=> \(2B+3=3^{2006}-3+3=3^{2006}\)

Vậy 2B + 3 là một lũy thừa của 3...

Câu 4: Do 4=22nên ta có: \(2C=2^3+2^3+2^4+...+2^{2005}+2^{2006}\)

=> \(C=2^{2006}+2^3-\left(2^2+4\right)\)=>\(C=2^{2006}\)

Vậy C là lũy thừa của 2 có số mũ là 2006

Câu 5: a, Do 3n+2 chia hết cho n-1 hay:

3n-3+5 sẽ chia hết cho n-1 =>3(n-1) +5 chia hết cho n-1...mà 3(n-1) chia hết cho n-1 nên 5 chia hết n-1;

=> n-1 thuộc (1,5,-1,-5);;; nên n tương ứng với(2;6;0;-4)

b ,Do n+6 chia hết cho n nên 6 chia hết cho n hay n là ước của 6 

nên => n thuộc (1,6,-1,-6);

c, Do 3n+4 chia hết cho n-1 hay: 3n-3+7 chia hết cho n-1

=> 3(n-1)+7 chia hết cho n-1 => 7 chia hết cho n-1;

n -1 thuộc (1,7,-1,-7) hay n sẽ tương ứng với( 2,8,0,-6);

d, Do n+5 chia hết cho n+1 hay n+1+4 chia hết cho n+1 

=> 4 chia hết cho n+1 => n+1 thuộc (1,4,-1,-4) nên n tương ứng với (0,3,-2,-5);

20 tháng 6 2017

thanks nha