K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

bn tham khảo trang https://www.slideshare.net/bluebookworm06_03/tng-hp-h-pt

2 tháng 3 2018

Ko có bạn ơi :<

20 tháng 8 2017

1.

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)

Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)

Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng

20 tháng 8 2017

Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)

Dễ thấy dấu "=" xảy ra khi  \(a=\frac{1}{3}\)

khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)

\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)

tương tự =>đpcm

Theo bài ra ta có :

 \(\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2\)

\(=233^2+2010^2\)

\(\Rightarrow\left(a^2+b^2\right)^3=4094389\)

\(\Rightarrow a^2+b^2=\sqrt[3]{4094389}\)

2 tháng 8 2016

gửi câu hỏi rồi tự trả lời luôn (tự kỉ) à  ?

14 tháng 6 2020

Sửa đề \(\hept{\begin{cases}n^2=a+b\\n^3+2=a^2+b^2\end{cases}}\)

Có \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Leftrightarrow n^4\le2\left(n^3+2\right)\) hay \(n^3\left(n-2\right)-4\le0\)

Nếu \(n\ge3\)thì \(n^3\left(n-2\right)-4\ge n^3-4>0\left(ktm\right)\Rightarrow n=\left\{0;1;2\right\}\)

Với n=0;1 không có số nguyên a,b thỏa mãn

Với n=2 \(\Rightarrow\orbr{\begin{cases}a=1;b=3\\a=3;b=1\end{cases}\left(tm\right)}\)

Vậy (n,a,b)={(2;1;3);(2;3;1)}

14 tháng 6 2020

\(a^2+b^2=n^3+2\ge0\)\(\Rightarrow\)\(n\ge-1\)

Quỳnh xét thiếu n=-1