Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(4a^2+b^2=5ab\Leftrightarrow4a^2+b^2-4ab-ab=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\4a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\left(ktm\right)\\4a=b\left(tm\right)\end{matrix}\right.\)
\(\Rightarrow4a=b\)
\(\Rightarrow\dfrac{5ab}{3a^2+2b^2}=\dfrac{5a.4a}{3a^2+2.\left(4a\right)^2}=\dfrac{20a^2}{3a^2+32a^2}\)
\(=\dfrac{20a^2}{35a^2}=\dfrac{4}{7}\)
\(4a^2+b^2=5ab\)
\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Rightarrow b=4a\left(do.a\ne b\right)\)
\(\dfrac{5ab}{3a^2+2b^2}=\dfrac{20a^2}{3a^2+32a^2}=\dfrac{4}{7}\)
Ta có: 2006a + 2006b = 2007a + 2006b = 4029052(1)
=>2007a+2006b-2006a-2006b=0
=>a=0.
Thay a=0 vào (1) ta dc:
2006a + 2006b = 2007a + 2006b = 4029052
=>2006.0+2006b=2007.0+2006b=4029052
=>0+2006b=0+2006b=4029052
=>2006b=4029052
=>b=4029052:2006
=>b=\(\frac{2014526}{1003}.\)
Hay b là số chính phương
Mà a=0
=>a+b là số chính phương.
=> a + b + 201 là số chính phương(đpcm).
P=3a-2b\2a+5 + 3b-a\b-5
=2a+a-2b\2a-5 + -a+2b+b\b-5
=2a+(a-2b)\2a-5 + -(a-2b)+b
=2a+5\2a-5 + -5+b\b-5
=-(2a-5)\(2a-5) + (b-5)\(b-5)
=-1+1=0
\(3a^2+2b^2=7ab\)
\(\Leftrightarrow3a^2-7ab+2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(3a-b\right)=0\)
\(\Leftrightarrow a=2b;b=3a\)
Bạn chỉ cần thay vào thì nó tự triệt tiêu biến, còn mỗi const thôi nhé !
Ta có
\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\left(1\right)\)
Ta lại có
\(6a^2-15ab+5b^2=0\)
\(\Leftrightarrow9a^2-b^2=3a^2+15ab-6b^2\left(2\right)\)
Từ (1) và (2) => Q = 1
\(3a^2+2b^2=7ab\)
\(\Leftrightarrow3a^2+2b^2-7ab=0\)
\(\Leftrightarrow3a^2-6ab-ab+2b^2=0\)
\(\Leftrightarrow3a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-2b\right)=0\)
Mà \(3a>b>0\)nên \(3a-b>0\)
Vậy \(a-2b=0\Leftrightarrow a=2b\Leftrightarrow\frac{a}{2}=\frac{b}{1}\)
Đặt \(\frac{a}{2}=\frac{b}{1}=k\Rightarrow\hept{\begin{cases}a=2k\\b=k\end{cases}}\)
\(\Rightarrow P=\frac{2005.2k-2006.k}{2006.2k+2007.k}=\frac{2004k}{6019k}=\frac{2004}{6019}\)