Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x
a.( x - 140 ) : 3 = 27
x - 140 = 27 . 3
x - 140 = 81
x = 221
b.14 - 4 ( x + 1 ) = 10
4 ( x + 1 ) = 14 - 10
4 ( x +1) = 4
x + 1 = 1
x = 0
c. 15 ( 7 - x ) = 15
7 - x = 1
x = 6
d.34 ( x - 3 ) = 0
\(\Rightarrow\) 34 = 0 hoặc x - 3 = 0
1. 34 = 0 ( vô lí )
2. x - 3 = 0 \(\Rightarrow\) x = 3
e. 24 + 6 (3 - x ) = 30
6( 3- x ) = 30 - 24
6( 3 - x ) = 6
3 - x = 1
x = 2
f. x3 + 24 = 51
x3 = 51 - 24
x3 = 27
\(\Rightarrow\)x = 3 ; x = -3
g. ( x- 5 )2 - 5 = 44
( x - 5) 2 = 49
\(\Rightarrow\)x - 5 = 7 hoặc x - 5 = -7
1. x - 5 = 7\(\Rightarrow\)x = 12
2. x - 5 = -7 \(\Rightarrow\)x = -2
h. ( x + 1 )3 - 23 = 4
( x + 1 )3 =27
\(\Rightarrow\) x + 1 = 3 hoặc x + 1 = -3
1. x + 1 = 3\(\Rightarrow\)x = 2
2. x + 1 = -3 \(\Rightarrow\)x = -4
Cậu tính ra S có bao nhiêu số hạng rồi vì Scó 100 số hạng.Mà S chia hết cho bốn rồi nhóm bốn số hạn của S vào nhau
6) \(2\left(x-8\right)=2^2\)
\(\Rightarrow x-8=2^2:2\)
\(\Rightarrow x-8=2\)
\(\Rightarrow x=2+8\)
\(\Rightarrow x=10\)
tíc mình nha
5) 14 chia hết cho 2x+3
=>2x+3 thuộc ước 14
mà Ư(14)={1,2,7,14}
ta có
2x+3 | 1 | 2 | 3 | 14 |
x | X | X | 0 | X |
vậy x=0
a) S = ( 1 - 3 + 32 - 33 ) + ( 34 - 35 + 36 - 37 ) + ... + ( 396 - 397 + 398 - 399 )
S = ( 1 - 3 + 32 - 33 ) + 34 ( 1 - 3 + 32 - 33 ) + ... + 396 ( 1 - 3 + 32 - 33 )
S = ( 1 - 3 + 32 - 33 ) ( 1 + 34 + ... + 396 )
S = ( 1 + 34 + .... + 396 ) \(⋮\)-20
Suy ra S là B(-20)
b) S = 1 - 3 + 32 - 33 + .... + 398 - 399
3S = 3 - 32 + 33 - 34 + ... + 399 - 3100
4S = 1 - 3100
\(\Rightarrow S=\frac{1-3^{100}}{4}\)
vì S là 1 số nguyên nên \(1-3^{100}⋮4\) \(\Rightarrow\)3100 chia 4 dư 1
a) \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\) có 100 số hạng
\(=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\) có 25 nhóm
\(=\left(-20\right)+\left(-20\right).3^4+...+\left(-20\right).3^{96}\)
\(=\left(-20\right).\left(1+3^4+...+3^{96}\right)⋮\left(-20\right)\)
=> S là B(-20)
b) Từ câu a
=> \(3^4.S=\left(-20\right).\left(3^4+3^8+...+3^{96}+3^{100}\right)\)
=> \(3^4.S-S=\left(-20\right).\left(3^4+3^8+...+3^{96}+3^{100}\right)-\left(-20\right)\left(1+3^4+...+3^{92}+3^{96}\right)\)
=> \(\left(3^4-1\right)S=\left(-20\right)\left(3^{100}-1\right)\)
=> \(80S=-20.\left(3^{100}-1\right)\)
=> \(S=-\frac{3^{100}-1}{4}\) mà S là số nguyên
=> \(3^{100}-1⋮4\)=> 3^100 : 4 dư 1