K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

Ta có biểu thức:

\(Q=\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\)

\(=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)+\left(y+1\right)\left(1-\frac{z^2}{z^2+1}\right)+\left(z+1\right)\left(1-\frac{x^2}{x^2+1}\right)\)

\(\ge\left(x+1\right)\left(1-\frac{y}{2}\right)+\left(y+1\right)\left(1-\frac{z}{2}\right)+\left(z+1\right)\left(1-\frac{x}{2}\right)\)

\(\Leftrightarrow Q\ge\left(x+y+z+3\right)-\frac{xy+yz+xz+x+y+z}{2}\)

\(\Leftrightarrow Q\ge6-\frac{xy+yz+xz+3}{2}\)

Mà \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\)

\(\Rightarrow Q\ge6-\frac{3+3}{2}=3\)

Vậy Min Q=3. Dấu "=" xảy ra khi và chỉ khi x=y=z=1

27 tháng 3 2020

bằng 3 

30 tháng 12 2015

oh. đễ mà
nhưng em học lop 8 
để khi nào em lên lớp 9 em giải cho :D

21 tháng 12 2015

mình làm phần tử đại diện thôi nha

áp dụng bđt cô-si ta đc:

ta có \(\frac{x^2}{\sqrt{x^2-1}}=\frac{x^3}{x\sqrt{x^2-1}}\ge\frac{x^3}{\frac{x^2+x^2-1}{2}}=2x^3\)

Đến đây đc rồi nhỉ?