Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy Schwarz ta có:
\(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+xz\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge\left|xy+yz+xz\right|\ge xy+yz+xz\left(1\right)\)
Mặt khác:
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2=9-2\left(xy+yz+xz\right)\)
Kết hợp với \(\left(1\right)\Rightarrow9-2\left(xy+yz+xz\right)\ge xy+yz+xz\)
\(\Leftrightarrow3\left(xy+yz+xz\right)\le9\Leftrightarrow xy+yz+xz\le3\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\\x+y+z=3\end{cases}}\Leftrightarrow x=y=z=1\)
Vậy \(Max\) biểu thức là \(3\Leftrightarrow x=y=z=1\)
Với \(x,y,z\)ta có :
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2>=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge=0\)
\(x^2+y^2+z^2-xy-yz-zx\ge=0\)
\(\left(y+x+z\right)^2\ge=3\left(x+y+z\right)\)
\(\frac{\left[\left(x+y+z\right)^2\right]}{3}\ge=xy+zx+yz\)
\(\Rightarrow xy+yz+zx\le=3\)
Dấu \(=\)xảy ra khi \(x=y=z=1\)
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Leftrightarrow x=y=z\)
M =\(\frac{y^{670.3}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)
Đề sai nhé mẫu mũ 2010 => M =1 mới đúng
Bài 20:
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y; y = x
=> x = y = z
mà \(M=\frac{x^{670}.y^{670}.z^{670}}{y^{2012}}\)
\(\Rightarrow M=\frac{y^{670}.y^{670}.y^{670}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)
b) a + c = 2b
=> d(a + c) = 2bd
=> ad + cd = 2bd (1)
Có: c(b + d) = 2bd
=> cb + cd = 2bd (2)
(1);(2) => ad + cd = cb + cd
=> ad = cb
=> a/b = c/d
=> đpcm
đợi nghĩ nốt c đã
ừ, thay chỗ M đi, thế x=y=z vào, rõ là giang biết mà ko làm, làm đi chứ, tui đầu óc ngu si làm sai ko à
Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\frac{\Rightarrow a}{x}=\frac{b}{y}=\frac{c}{z};a+b+c=1\)
ADTC dãy tỉ số bằng nhau ta có:
\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}=\frac{1}{x+y+z}\)
\(\frac{\Leftrightarrow a^2}{x^2}=\frac{b^2}{y^2}=\frac{c^2}{z^2}=\frac{1}{\left(x+y+z\right)^2}\left(1\right)\)
Áp dụng tiếp tính chất dãy tỉ số bằng nhau ta đc:
\(\frac{a^2}{x^2}=\frac{b^2}{y^2}=\frac{c^2}{z^2}=\frac{a^2+b^2+c^2}{x^2+y^2+z^2}=\frac{1}{x^2+y^2+z^2}\left(2\right)\)
Từ (1) và (2) => (x+y+z)2 = x2 + y2 + z2
=> (x+y+z)2 - x2 - y2 - z2 =0
=> 2.(xy+yz+xz) = 0
=> xy + yz + xz =0
Vậy.......
đpcm.
ta có: xy+x+y = 3
=> xy +x +y +1 =4
=> (x+1).(y+1) = 4 (1)
tương tự, ta có: (y+1).(z+1)= 9 (2)
(x+1).(z+1) = 16 (3)
Nhân (1);(2);(3) lại vs nhau
được: \([\left(x+1\right).\left(y+1\right).\left(z+1\right)]^2=576=24^2=\left(-24\right)^2.\)
TH1: (x+1).(y+1).(z+1) = 24
=> 4.(z+1)=24
=> z+1 = 6 => z = 5
mà yz +y +z = 8
=> 6y + 5 = 8 => y = 1/2
mà xz+z+x = 15
=> 6x + 5 = 15 => x = 5/3
=> P = 5/3 +1/2 + 5 = 43/6
TH2: (x+1).(y+1).(z+1) = -24
...
bn cũng lm tương tự như TH1 nha!