K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

ta có: xy+x+y = 3

=> xy +x +y +1 =4

=> (x+1).(y+1) = 4 (1)

tương tự, ta có: (y+1).(z+1)= 9 (2)

(x+1).(z+1) = 16 (3)

Nhân (1);(2);(3) lại vs nhau

được: \([\left(x+1\right).\left(y+1\right).\left(z+1\right)]^2=576=24^2=\left(-24\right)^2.\)

TH1: (x+1).(y+1).(z+1) = 24

=> 4.(z+1)=24

=> z+1 = 6 => z = 5

mà yz +y +z = 8

=> 6y + 5 = 8 => y = 1/2

mà xz+z+x = 15

=> 6x + 5 = 15 => x = 5/3

=> P =  5/3 +1/2 + 5 = 43/6

TH2: (x+1).(y+1).(z+1) = -24

...

bn cũng lm tương tự như TH1 nha!

1 tháng 5 2017

Áp dụng BĐT Cauchy Schwarz ta có:

\(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+xz\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2\ge\left|xy+yz+xz\right|\ge xy+yz+xz\left(1\right)\)

Mặt khác:

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2=9-2\left(xy+yz+xz\right)\)

Kết hợp với \(\left(1\right)\Rightarrow9-2\left(xy+yz+xz\right)\ge xy+yz+xz\)

\(\Leftrightarrow3\left(xy+yz+xz\right)\le9\Leftrightarrow xy+yz+xz\le3\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\\x+y+z=3\end{cases}}\Leftrightarrow x=y=z=1\)

Vậy \(Max\) biểu thức là \(3\Leftrightarrow x=y=z=1\)

6 tháng 4 2017

Với \(x,y,z\)ta có :

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2>=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge=0\)

\(x^2+y^2+z^2-xy-yz-zx\ge=0\)

\(\left(y+x+z\right)^2\ge=3\left(x+y+z\right)\)

\(\frac{\left[\left(x+y+z\right)^2\right]}{3}\ge=xy+zx+yz\)

\(\Rightarrow xy+yz+zx\le=3\)

Dấu \(=\)xảy ra khi \(x=y=z=1\)

10 tháng 12 2015

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Leftrightarrow x=y=z\)

M =\(\frac{y^{670.3}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)

Đề sai nhé  mẫu mũ 2010  => M =1  mới đúng

10 tháng 12 2015

Bài 20: 

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y; y = x

=> x = y = z

mà \(M=\frac{x^{670}.y^{670}.z^{670}}{y^{2012}}\)

\(\Rightarrow M=\frac{y^{670}.y^{670}.y^{670}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)

b) a + c = 2b

=> d(a + c) = 2bd

=> ad + cd = 2bd  (1)

Có: c(b + d) = 2bd

=> cb + cd = 2bd  (2)

(1);(2) => ad + cd = cb + cd

=> ad = cb

=> a/b = c/d

=> đpcm

đợi nghĩ nốt c đã

10 tháng 12 2015

ừ, thay chỗ M đi, thế x=y=z vào, rõ là giang biết mà ko làm, làm đi chứ, tui đầu óc ngu si làm sai ko à

17 tháng 1 2020

Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

\(\frac{\Rightarrow a}{x}=\frac{b}{y}=\frac{c}{z};a+b+c=1\)

ADTC dãy tỉ số bằng nhau ta có:

\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}=\frac{1}{x+y+z}\)

\(\frac{\Leftrightarrow a^2}{x^2}=\frac{b^2}{y^2}=\frac{c^2}{z^2}=\frac{1}{\left(x+y+z\right)^2}\left(1\right)\)

Áp dụng tiếp tính chất dãy tỉ số bằng nhau ta đc:

\(\frac{a^2}{x^2}=\frac{b^2}{y^2}=\frac{c^2}{z^2}=\frac{a^2+b^2+c^2}{x^2+y^2+z^2}=\frac{1}{x^2+y^2+z^2}\left(2\right)\)

Từ (1) và (2) => (x+y+z)2 = x2 + y2 + z2

=> (x+y+z)2 - x2 - y2 - z=0

=> 2.(xy+yz+xz) = 0

=> xy + yz + xz =0

Vậy.......

đpcm.