K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

Áp dung BĐT HoIder ta có

\(\left(1+1+1\right)\left(1+1+1\right)\left(x^3+y^3+z^3\right)\ge\left(x+y+z\right)^3\)

\(\Leftrightarrow9\left(x^3+y^3+z^3\right)\ge1\)

\(\Leftrightarrow x^3+y^3+z^3\ge\frac{1}{9}\)

"=" <=> \(x=y=z=\frac{1}{3}\)

8 tháng 3 2018

chó thắng éo bít gì cx chọn sai khi người ta làm đúng. Chó kiki

NV
1 tháng 3 2023

Ta có: \(2x^3+2y^3-\left(x+y\right)\left(x^2+y^2\right)=\left(x-y\right)^2\left(x+y\right)\ge0\)

\(\Rightarrow\dfrac{x^3+y^3}{x^2+y^2}\ge\dfrac{x+y}{2}\)

Tương tự: \(\dfrac{y^3+z^3}{y^2+z^2}\ge\dfrac{y+z}{2}\) ; \(\dfrac{z^3+x^3}{z^2+x^2}\ge\dfrac{z+x}{2}\)

Cộng vế: \(P\ge x+y+z\ge6\)

\(P_{min}=6\) khi \(x=y=z=2\)

30 tháng 5 2020

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

5 tháng 11 2019

\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(y^2+1\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\ge x+1-\frac{xy+y}{2}\)

Tương tự ta có:

\(\frac{y+1}{z^2+1}\ge y+1-\frac{yz+z}{2}\)

\(\frac{z+1}{1+x^2}\ge z+1-\frac{zx+x}{2}\)

Cộng vế theo vế ta có:

\(Q\ge3+\left(x+y+z\right)-\frac{x+y+z+xy+yz+zx}{2}\)

\(=3+\frac{x+y+z-xy-yz-zx}{2}\)

Có BĐT phụ sau:

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( tự cm )

\(\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)

Khi đó \(P\ge3\)

Dấu "=" xảy ra tại \(x=y=z=1\)

1 tháng 2 2021

Áp dụng bất đẳng thức Bunhia dạng phân thức cho 3 số ta có:

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\begin{matrix}\dfrac{x}{y+z}=\dfrac{y}{z+x}=\dfrac{z}{x+y}\\x,y,z>0;x+y+z=2\end{matrix}\)

\(\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Áp dụng BĐT Svac-xơ cho 3 số dương có :

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Vậy Min biểu thức cho là 1 khi \(x=y=z=\dfrac{2}{3}\)

9 tháng 2 2019

Ta có: \(\frac{x+1}{y^2+1}=\left(x+1\right).\frac{1}{y^2+1}=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)\)

\(\ge\left(x+1\right)\left(1-\frac{y^2}{2y}\right)=x+1-\frac{y\left(x+1\right)}{2}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế:

\(P\ge\left(x+y+z+3\right)-\frac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)

\(=6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\) (*)

Lại có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

Thật vậy,ta có: BĐT \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

Thay vào (*),ta có: \(P\ge6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\)

\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}=6-\frac{3+3}{2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=3\Leftrightarrow x=y=z=1\)

9 tháng 2 2019

Bài t đúng 100% nhá,đứa nào tk sai t nhở? ngon vô làm lại=)