\(\ne\)0 thỏa mãn điều kiện:

\(\frac{y+z-x}{x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất dãy tỉ số bằng nhau, ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\)

\(=\frac{x+y+z}{x+y+z}=1\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)

\(\Rightarrow x=y=z\)

\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(=2.2.2=8\)

18 tháng 4 2021

Áp dụng tính chất dãy tỉ số bằng nhau , ta có

     y + z - x / x = z + x - y / y = x + y - z / z = y + z - x + z +x - y + x + y - z / x + y + z = x + y + z / x + y + z

TH1 : x + y + z = 0

       => x + y = - z ; y + z = - x và x + z = -y

Ta có : B = ( 1 + x / y ) ( 1 + y / z ) ( 1 + z / x )

               = ( x + y / y ) ( z + y / z ) ( x + z / x )        ( 1 )

               = - z / y . ( - x / z ) ( -y / x )

              = - 1

TH2 : x + y + z khác 0

Do đó y + z - x / x = z + x - y / y = x + y - z / z = x + y + z / x + y + z = 1

thì y + z - x / x = 1         => y + z - x = x                 => y + z = 2x        ( 2 )

     z + x - y / y = 1              z + x - y = y                      z + x = 2y         ( 3 )

     x + y - z / z = 1              x + y - z = z                      x + y = 2z         ( 4 )

Thay ( 2 ) , ( 3 ) , ( 4 ) vào ( 1 ) ta có 

       B = 2x/y . 2y / z . 2z / x

          = 2 . 2 . 2 = 8

Vậy B = - 1 khi x + y + z = 0

       B = 8 khi x + y + z khác 0

[ xin lỗi nha , tại mình không biết viết phân số ]

22 tháng 10 2018

Từ\(\frac{y+z-x}{x}\)=\(\frac{z+x-y}{y}\)\(\frac{x+y-z}{z}\)\(\Rightarrow\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}\) ( t/c dãy tỉ số bằng nhau)

                                                                                      \(\Rightarrow\frac{x+y+z}{x+y+z}=1\)

Khi đó: B=\(\left(1+\frac{x}{y}\right)=\left(1+\frac{y}{z}\right)=\left(1+\frac{z}{x}\right)\) \(\Rightarrow\frac{y+x}{y}=\frac{z+y}{z}=\frac{x+z}{x}\) ( Quy đồng từng phân thức)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{y+x+z+y+x+z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}\)

                                                                                                                        \(=x+y+z\) 

                                                                                                                          \(=1\)

Vậy B =1 

18 tháng 12 2017

Đề sai kìa bạn ơi 

Nếu x+y+z = 0 thì

B = x+y/y . y+z/z . z+x/x = -z/y.(-x/z).(-y/x) = -1

Nếu x+y+z khác 0 thì :

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

y+z-x/x = z+x-y/y = x+y-z/z = y+z-x+z+x-y+x+y-z/x+y+z = 1

=> y+z-x = y ; z+x-y = y ; x+y-z = x

=> x=y=z

=> B = (1+1).(1+1).(1+1) = 8 

k mk nha

30 tháng 8 2021

áp dụng tc của dãy tỉ số = nhau : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}\Leftrightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}z-x=2x-2z\\y-x=2x-2y\\z-y=2y-z\end{cases}\Leftrightarrow\hept{\begin{cases}3x=3z\\3x=3y\\3y=3z\end{cases}}\Leftrightarrow x=y=z}\)

thay vào B ta đc : \(B=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=8\)

30 tháng 8 2021

Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

=> \(\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

=> \(\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

Khi x + y + z = 0 

=> x + y = -z ; y + z = -x ; z + x = -y

Khi đó \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}=\frac{-z.\left(-x\right).\left(-y\right)}{y.z.x}=-1\)

Khi x  + y + z \(\ne\)0

=> x = y = z 

Khi đó \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

12 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=2\)

Do đó : 

\(\frac{y+z-x}{x}=2\)\(\Leftrightarrow\)\(y+z-x=2x\)\(\Leftrightarrow\)\(y+z=3x\) \(\left(1\right)\)

\(\frac{z+x-y}{y}=2\)\(\Leftrightarrow\)\(z+x-y=2y\)\(\Leftrightarrow\)\(z+x=3z\) \(\left(2\right)\)

\(\frac{x+y-z}{z}=2\)\(\Leftrightarrow\)\(x+y-z=2z\)\(\Leftrightarrow\)\(x+y=3z\) \(\left(3\right)\)

Thay (1), (2) và (3) vào \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\) ta được : 

\(B=\frac{3z}{y}.\frac{3x}{z}.\frac{3y}{x}=\frac{27xyz}{xyz}=27\)

Vậy \(B=27\)

Chúc bạn học tốt ~ 

12 tháng 10 2018

B=27

hok tốt/good studying

26 tháng 10 2017

Bexiu2k5 là tên đăng nhập -.-

26 tháng 10 2017

Lời giải:

Ta có:

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+z\right).\left(y+x\right).\left(z+y\right)}{xyz}\)

+) Nếu .\(x+y+z\ne0\)

Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(=\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(..............\)
 

1 tháng 3 2020

áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)

y+z-x/x=z+x-y/y=x+y-z/z

=y+z-x+z+x-y+x+y-z/x+y+z

=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z

=0+0+0+x+y+z/x+y+z=1

\(\Leftrightarrow\)x=y=z (*)

thay (*) vào B ta có:

B=(1+x/x)(1+x/x)(1+x/x)

  =2.2.2=8

21 tháng 8 2020

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )

\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)

Thế x = y = z vào B ta được :

\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)